Preface |
|
xi | |
Acknowledgment |
|
xv | |
|
1 Two-Port Network Parameters and Passive Elements |
|
|
1 | (36) |
|
1.1 Traditional Network Parameters |
|
|
1 | (6) |
|
1.2 Scattering Parameters |
|
|
7 | (4) |
|
1.3 Interconnections of Two-Port Networks |
|
|
11 | (5) |
|
1.4 Practical Two-Port Networks |
|
|
16 | (4) |
|
1.4.1 Single-Element Networks |
|
|
16 | (1) |
|
1.4.2 π-and T-Type Networks |
|
|
17 | (3) |
|
1.5 Three-Port Network with Common Terminal |
|
|
20 | (3) |
|
|
23 | (6) |
|
|
23 | (4) |
|
|
27 | (2) |
|
|
29 | (8) |
|
|
34 | (3) |
|
2 Nonlinear Circuit Design Methods |
|
|
37 | (34) |
|
2.1 Frequency-Domain Analysis |
|
|
37 | (10) |
|
2.1.1 Trigonometric Identities |
|
|
38 | (2) |
|
2.1.2 Piecewise-Linear Approximation |
|
|
40 | (5) |
|
|
45 | (2) |
|
|
47 | (3) |
|
2.3 Newton-Raphson Algorithm |
|
|
50 | (4) |
|
|
54 | (4) |
|
2.5 Harmonic Balance Method |
|
|
58 | (4) |
|
|
62 | (9) |
|
|
69 | (2) |
|
3 Nonlinear Active Device Modeling |
|
|
71 | (56) |
|
|
72 | (22) |
|
3.1.1 Small-Signal Equivalent Circuit |
|
|
72 | (3) |
|
3.1.2 Determination of Equivalent Circuit Elements |
|
|
75 | (4) |
|
3.1.3 Nonlinear I-V Models |
|
|
79 | (5) |
|
3.1.4 Nonlinear C-V Models |
|
|
84 | (6) |
|
3.1.5 Charge Conservation |
|
|
90 | (1) |
|
3.1.6 Gate-Source Resistance |
|
|
91 | (1) |
|
3.1.7 Temperature Dependence |
|
|
92 | (2) |
|
|
94 | (16) |
|
3.2.1 Small-Signal Equivalent Circuit |
|
|
94 | (5) |
|
3.2.2 Determination of Equivalent Circuit Elements |
|
|
99 | (3) |
|
3.2.3 Curtice Quadratic Nonlinear Model |
|
|
102 | (2) |
|
3.2.4 Materka-Kacprzak Nonlinear Model |
|
|
104 | (1) |
|
3.2.5 Chalmers (Angelov) Nonlinear Model |
|
|
105 | (3) |
|
3.2.6 IAF (Berroth) Nonlinear Model |
|
|
108 | (1) |
|
|
109 | (1) |
|
|
110 | (17) |
|
3.3.1 Small-Signal Equivalent Circuit |
|
|
110 | (2) |
|
3.3.2 Determination of Equivalent Circuit Elements |
|
|
112 | (4) |
|
3.3.3 Equivalence of Intrinsic π- and T-Type Topologies |
|
|
116 | (1) |
|
3.3.4 Nonlinear Bipolar Device Modeling |
|
|
117 | (6) |
|
|
123 | (4) |
|
|
127 | (60) |
|
|
127 | (4) |
|
|
131 | (5) |
|
4.3 Matching with Lumped Elements |
|
|
136 | (20) |
|
4.3.1 Analytic Design Technique |
|
|
136 | (13) |
|
4.3.2 Bipolar UHF Power Amplifier |
|
|
149 | (4) |
|
4.3.3 MOSFET VHF High-Power Amplifier |
|
|
153 | (3) |
|
4.4 Matching with Transmission Lines |
|
|
156 | (18) |
|
4.4.1 Analytic Design Technique |
|
|
156 | (9) |
|
4.4.2 Equivalence between Circuits with Lumped and Distributed Parameters |
|
|
165 | (4) |
|
4.4.3 Narrow-Band Microwave Power Amplifier |
|
|
169 | (1) |
|
4.4.4 Broadband UHF High-Power Amplifier |
|
|
170 | (4) |
|
4.5 Types of Transmission Lines |
|
|
174 | (13) |
|
|
174 | (2) |
|
|
176 | (2) |
|
|
178 | (3) |
|
|
181 | (2) |
|
|
183 | (2) |
|
|
185 | (2) |
|
5 Power Transformers, Combiners, and Couplers |
|
|
187 | (54) |
|
|
187 | (4) |
|
5.1.1 Three-Port Networks |
|
|
188 | (1) |
|
|
189 | (2) |
|
5.2 Transmission-Line Transformers and Combiners |
|
|
191 | (13) |
|
|
204 | (6) |
|
5.4 Wilkinson Power Dividers/Combiners |
|
|
210 | (11) |
|
5.5 Branch-Line Hybrid Couplers |
|
|
221 | (8) |
|
5.6 Coupled-Line Directional Couplers |
|
|
229 | (12) |
|
|
236 | (5) |
|
6 Power Amplifier Design Fundamentals |
|
|
241 | (82) |
|
|
242 | (7) |
|
6.2 Power Gain and Stability |
|
|
249 | (3) |
|
6.3 Stabilization Circuit Technique |
|
|
252 | (15) |
|
6.3.1 Frequency Domains of BJT Potential Instability |
|
|
252 | (6) |
|
6.3.2 Frequency Domains of MOSFET Potential Instability |
|
|
258 | (4) |
|
6.3.3 Some Examples of Stabilization Circuits |
|
|
262 | (5) |
|
6.4 Basic Classes of Operation: A, AB, B, and C |
|
|
267 | (7) |
|
6.5 Load Line and Output Impedance |
|
|
274 | (4) |
|
6.6 Classes of Operation Based on Finite Number of Harmonics |
|
|
278 | (3) |
|
6.7 Mixed-Mode Class B and Nonlinear Effect of Collector Capacitance |
|
|
281 | (5) |
|
6.8 Load-Pull Characterization |
|
|
286 | (4) |
|
|
290 | (8) |
|
6.10 Push-Pull and Balanced Power Amplifiers |
|
|
298 | (8) |
|
6.10.1 Basic Push-Pull Configurations |
|
|
298 | (5) |
|
6.10.2 Balanced Power Amplifiers |
|
|
303 | (3) |
|
|
306 | (7) |
|
6.12 Practical Aspect of RF and Microwave Power Amplifiers |
|
|
313 | (10) |
|
|
319 | (4) |
|
7 High-Efficiency Power Amplifiers |
|
|
323 | (90) |
|
|
323 | (4) |
|
7.2 Class-F Circuit Design |
|
|
327 | (27) |
|
7.2.1 Idealized Class-F Mode |
|
|
329 | (4) |
|
7.2.2 Class F with Maximally Flat Waveforms |
|
|
333 | (5) |
|
7.2.3 Class F with Quarterwave Transmission Line |
|
|
338 | (4) |
|
7.2.4 Effect of Saturation Resistance |
|
|
342 | (2) |
|
7.2.5 Load Networks with Lumped and Distributed Parameters |
|
|
344 | (4) |
|
7.2.6 Design Examples of Class-F Power Amplifiers |
|
|
348 | (6) |
|
|
354 | (19) |
|
7.3.1 Idealized Inverse Class-F Mode |
|
|
356 | (3) |
|
7.3.2 Inverse Class F with Quarterwave Transmission Line |
|
|
359 | (2) |
|
7.3.3 Load Networks with Lumped and Distributed Parameters |
|
|
361 | (2) |
|
7.3.4 Design Examples of Inverse Class-F Power Amplifiers |
|
|
363 | (10) |
|
7.4 Class E with Shunt Capacitance |
|
|
373 | (21) |
|
7.4.1 Optimum Load-Network Parameters |
|
|
374 | (7) |
|
7.4.2 Effect of Saturation Resistance, Finite Switching Time, and Nonlinear Shunt Capacitance |
|
|
381 | (4) |
|
7.4.3 Optimum, Nominal, and Off-Nominal Class-E Operation |
|
|
385 | (2) |
|
7.4.4 Load Network with Transmission Lines |
|
|
387 | (3) |
|
7.4.5 Practical Class-E Power Amplifiers |
|
|
390 | (4) |
|
7.5 Class E with Finite DC-Feed Inductance |
|
|
394 | (19) |
|
7.5.1 General Analysis and Optimum Circuit Parameters |
|
|
395 | (7) |
|
7.5.2 Parallel-Circuit Class E |
|
|
402 | (3) |
|
7.5.3 Load Networks with Transmission Lines |
|
|
405 | (3) |
|
|
408 | (5) |
|
8 Broadband Power Amplifiers |
|
|
413 | (88) |
|
|
414 | (2) |
|
8.2 Matching Networks with Lumped Elements |
|
|
416 | (11) |
|
8.3 Matching Networks with Mixed Lumped and Distributed Elements |
|
|
427 | (4) |
|
8.4 Matching Networks with Transmission Lines |
|
|
431 | (12) |
|
8.5 Power Amplifiers with Lossy Compensation Networks |
|
|
443 | (13) |
|
8.5.1 Lossy Match Design Techniques |
|
|
444 | (6) |
|
|
450 | (6) |
|
8.6 Broadband Class-E Power Amplifiers |
|
|
456 | (34) |
|
8.6.1 Reactance Compensation Technique |
|
|
456 | (13) |
|
8.6.2 Broadband Class E with Shunt Capacitance |
|
|
469 | (8) |
|
8.6.3 Broadband Parallel-Circuit Class E |
|
|
477 | (7) |
|
8.6.4 Monolithic Microwave Broadband Class-E Power Amplifiers |
|
|
484 | (3) |
|
8.6.5 Broadband CMOS Class-E Power Amplifiers |
|
|
487 | (3) |
|
8.7 Practical Broadband RF and Microwave Power Amplifiers |
|
|
490 | (11) |
|
|
497 | (4) |
|
9 Linearization and Efficiency Enhancement Techniques |
|
|
501 | (72) |
|
9.1 Feedforward Amplifier Architecture |
|
|
501 | (8) |
|
9.2 Predistortion Linearization |
|
|
509 | (8) |
|
9.3 Outphasing Power Amplifiers |
|
|
517 | (15) |
|
|
532 | (8) |
|
9.5 Switched-Path and Variable-Load Power Amplifiers |
|
|
540 | (11) |
|
9.6 Monolithic HBT and CMOS Power Amplifiers for Handset Applications |
|
|
551 | (22) |
|
|
565 | (8) |
|
10 High-Efficiency Doherty Power Amplifiers |
|
|
573 | (62) |
|
10.1 Historical Aspect and Conventional Doherty Architectures |
|
|
573 | (14) |
|
|
575 | (5) |
|
10.1.2 Operation Principle |
|
|
580 | (3) |
|
|
583 | (2) |
|
|
585 | (2) |
|
10.1.5 Series-Connected Load |
|
|
587 | (1) |
|
10.2 Efficiency Improvement |
|
|
587 | (4) |
|
10.3 Asymmetric Doherty Amplifiers |
|
|
591 | (3) |
|
10.4 Multistage Doherty Amplifiers |
|
|
594 | (7) |
|
10.5 Inverted Doherty Amplifiers |
|
|
601 | (3) |
|
|
604 | (7) |
|
10.7 Digitally Driven Doherty Amplifier |
|
|
611 | (2) |
|
10.8 Multiband and Broadband Capability |
|
|
613 | (22) |
|
10.8.1 Dual-Band Parallel Doherty Architecture |
|
|
614 | (7) |
|
10.8.2 Tri-Band Inverted Doherty Configuration |
|
|
621 | (9) |
|
|
630 | (5) |
Index |
|
635 | |