Muutke küpsiste eelistusi

E-raamat: RF and Microwave Power Amplifier Design, Second Edition

  • Formaat: 672 pages
  • Ilmumisaeg: 09-Feb-2015
  • Kirjastus: McGraw-Hill Professional
  • Keel: eng
  • ISBN-13: 9780071828635
  • Formaat - PDF+DRM
  • Hind: 170,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 672 pages
  • Ilmumisaeg: 09-Feb-2015
  • Kirjastus: McGraw-Hill Professional
  • Keel: eng
  • ISBN-13: 9780071828635

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product.



The latest power amp design methodsFully updated to address cutting-edge technologies, the new edition of this practical guide provides comprehensive, state-of-the-art coverage of RF and microwave power amplifier design. The book describes both existing and new schematic configurations, theoretical approaches, circuit simulation results, and implementation techniques.

New chapters discuss linearization and efficiency enhancement and high-efficiency Doherty power amplifiers. Featuring a systematic approach, this comprehensive resource bridges the theory and practice of RF and microwave engineering.

RF and Microwave Power Amplifier Design, Second Edition, covers:





Two-port network parameters and passive elements Nonlinear circuit design methods Nonlinear active device modeling Impedance matching Power transformers, combiners, and couplers Power amplifier design fundamentals High-efficiency power amplifier design Broadband power amplifiers Linearization and efficiency enhancement techniques High-efficiency Doherty power amplifiers
Preface xi
Acknowledgment xv
1 Two-Port Network Parameters and Passive Elements
1(36)
1.1 Traditional Network Parameters
1(6)
1.2 Scattering Parameters
7(4)
1.3 Interconnections of Two-Port Networks
11(5)
1.4 Practical Two-Port Networks
16(4)
1.4.1 Single-Element Networks
16(1)
1.4.2 π-and T-Type Networks
17(3)
1.5 Three-Port Network with Common Terminal
20(3)
1.6 Lumped Elements
23(6)
1.6.1 Inductors
23(4)
1.6.2 Capacitors
27(2)
1.7 Transmission Line
29(8)
References
34(3)
2 Nonlinear Circuit Design Methods
37(34)
2.1 Frequency-Domain Analysis
37(10)
2.1.1 Trigonometric Identities
38(2)
2.1.2 Piecewise-Linear Approximation
40(5)
2.1.3 Bessel Functions
45(2)
2.2 Time-Domain Analysis
47(3)
2.3 Newton-Raphson Algorithm
50(4)
2.4 Quasilinear Method
54(4)
2.5 Harmonic Balance Method
58(4)
2.6 X-Parameters
62(9)
References
69(2)
3 Nonlinear Active Device Modeling
71(56)
3.1 Power MOSFETs
72(22)
3.1.1 Small-Signal Equivalent Circuit
72(3)
3.1.2 Determination of Equivalent Circuit Elements
75(4)
3.1.3 Nonlinear I-V Models
79(5)
3.1.4 Nonlinear C-V Models
84(6)
3.1.5 Charge Conservation
90(1)
3.1.6 Gate-Source Resistance
91(1)
3.1.7 Temperature Dependence
92(2)
3.2 MESFETs and HEMTs
94(16)
3.2.1 Small-Signal Equivalent Circuit
94(5)
3.2.2 Determination of Equivalent Circuit Elements
99(3)
3.2.3 Curtice Quadratic Nonlinear Model
102(2)
3.2.4 Materka-Kacprzak Nonlinear Model
104(1)
3.2.5 Chalmers (Angelov) Nonlinear Model
105(3)
3.2.6 IAF (Berroth) Nonlinear Model
108(1)
3.2.7 Model Selection
109(1)
3.3 BJTs and HBTs
110(17)
3.3.1 Small-Signal Equivalent Circuit
110(2)
3.3.2 Determination of Equivalent Circuit Elements
112(4)
3.3.3 Equivalence of Intrinsic π- and T-Type Topologies
116(1)
3.3.4 Nonlinear Bipolar Device Modeling
117(6)
References
123(4)
4 Impedance Matching
127(60)
4.1 Main Principles
127(4)
4.2 Smith Chart
131(5)
4.3 Matching with Lumped Elements
136(20)
4.3.1 Analytic Design Technique
136(13)
4.3.2 Bipolar UHF Power Amplifier
149(4)
4.3.3 MOSFET VHF High-Power Amplifier
153(3)
4.4 Matching with Transmission Lines
156(18)
4.4.1 Analytic Design Technique
156(9)
4.4.2 Equivalence between Circuits with Lumped and Distributed Parameters
165(4)
4.4.3 Narrow-Band Microwave Power Amplifier
169(1)
4.4.4 Broadband UHF High-Power Amplifier
170(4)
4.5 Types of Transmission Lines
174(13)
4.5.1 Coaxial Line
174(2)
4.5.2 Stripline
176(2)
4.5.3 Microstrip Line
178(3)
4.5.4 Slotline
181(2)
4.5.5 Coplanar Waveguide
183(2)
References
185(2)
5 Power Transformers, Combiners, and Couplers
187(54)
5.1 Basic Properties
187(4)
5.1.1 Three-Port Networks
188(1)
5.1.2 Four-Port Networks
189(2)
5.2 Transmission-Line Transformers and Combiners
191(13)
5.3 Baluns
204(6)
5.4 Wilkinson Power Dividers/Combiners
210(11)
5.5 Branch-Line Hybrid Couplers
221(8)
5.6 Coupled-Line Directional Couplers
229(12)
References
236(5)
6 Power Amplifier Design Fundamentals
241(82)
6.1 Main Characteristics
242(7)
6.2 Power Gain and Stability
249(3)
6.3 Stabilization Circuit Technique
252(15)
6.3.1 Frequency Domains of BJT Potential Instability
252(6)
6.3.2 Frequency Domains of MOSFET Potential Instability
258(4)
6.3.3 Some Examples of Stabilization Circuits
262(5)
6.4 Basic Classes of Operation: A, AB, B, and C
267(7)
6.5 Load Line and Output Impedance
274(4)
6.6 Classes of Operation Based on Finite Number of Harmonics
278(3)
6.7 Mixed-Mode Class B and Nonlinear Effect of Collector Capacitance
281(5)
6.8 Load-Pull Characterization
286(4)
6.9 Linearity
290(8)
6.10 Push-Pull and Balanced Power Amplifiers
298(8)
6.10.1 Basic Push-Pull Configurations
298(5)
6.10.2 Balanced Power Amplifiers
303(3)
6.11 Bias Circuits
306(7)
6.12 Practical Aspect of RF and Microwave Power Amplifiers
313(10)
References
319(4)
7 High-Efficiency Power Amplifiers
323(90)
7.1 Overdriven Class B
323(4)
7.2 Class-F Circuit Design
327(27)
7.2.1 Idealized Class-F Mode
329(4)
7.2.2 Class F with Maximally Flat Waveforms
333(5)
7.2.3 Class F with Quarterwave Transmission Line
338(4)
7.2.4 Effect of Saturation Resistance
342(2)
7.2.5 Load Networks with Lumped and Distributed Parameters
344(4)
7.2.6 Design Examples of Class-F Power Amplifiers
348(6)
7.3 Inverse Class F
354(19)
7.3.1 Idealized Inverse Class-F Mode
356(3)
7.3.2 Inverse Class F with Quarterwave Transmission Line
359(2)
7.3.3 Load Networks with Lumped and Distributed Parameters
361(2)
7.3.4 Design Examples of Inverse Class-F Power Amplifiers
363(10)
7.4 Class E with Shunt Capacitance
373(21)
7.4.1 Optimum Load-Network Parameters
374(7)
7.4.2 Effect of Saturation Resistance, Finite Switching Time, and Nonlinear Shunt Capacitance
381(4)
7.4.3 Optimum, Nominal, and Off-Nominal Class-E Operation
385(2)
7.4.4 Load Network with Transmission Lines
387(3)
7.4.5 Practical Class-E Power Amplifiers
390(4)
7.5 Class E with Finite DC-Feed Inductance
394(19)
7.5.1 General Analysis and Optimum Circuit Parameters
395(7)
7.5.2 Parallel-Circuit Class E
402(3)
7.5.3 Load Networks with Transmission Lines
405(3)
References
408(5)
8 Broadband Power Amplifiers
413(88)
8.1 Bode-Fano Criterion
414(2)
8.2 Matching Networks with Lumped Elements
416(11)
8.3 Matching Networks with Mixed Lumped and Distributed Elements
427(4)
8.4 Matching Networks with Transmission Lines
431(12)
8.5 Power Amplifiers with Lossy Compensation Networks
443(13)
8.5.1 Lossy Match Design Techniques
444(6)
8.5.2 Practical Examples
450(6)
8.6 Broadband Class-E Power Amplifiers
456(34)
8.6.1 Reactance Compensation Technique
456(13)
8.6.2 Broadband Class E with Shunt Capacitance
469(8)
8.6.3 Broadband Parallel-Circuit Class E
477(7)
8.6.4 Monolithic Microwave Broadband Class-E Power Amplifiers
484(3)
8.6.5 Broadband CMOS Class-E Power Amplifiers
487(3)
8.7 Practical Broadband RF and Microwave Power Amplifiers
490(11)
References
497(4)
9 Linearization and Efficiency Enhancement Techniques
501(72)
9.1 Feedforward Amplifier Architecture
501(8)
9.2 Predistortion Linearization
509(8)
9.3 Outphasing Power Amplifiers
517(15)
9.4 Envelope Tracking
532(8)
9.5 Switched-Path and Variable-Load Power Amplifiers
540(11)
9.6 Monolithic HBT and CMOS Power Amplifiers for Handset Applications
551(22)
References
565(8)
10 High-Efficiency Doherty Power Amplifiers
573(62)
10.1 Historical Aspect and Conventional Doherty Architectures
573(14)
10.1.1 Basic Structures
575(5)
10.1.2 Operation Principle
580(3)
10.1.3 Offset Lines
583(2)
10.1.4 Linearity
585(2)
10.1.5 Series-Connected Load
587(1)
10.2 Efficiency Improvement
587(4)
10.3 Asymmetric Doherty Amplifiers
591(3)
10.4 Multistage Doherty Amplifiers
594(7)
10.5 Inverted Doherty Amplifiers
601(3)
10.6 Integration
604(7)
10.7 Digitally Driven Doherty Amplifier
611(2)
10.8 Multiband and Broadband Capability
613(22)
10.8.1 Dual-Band Parallel Doherty Architecture
614(7)
10.8.2 Tri-Band Inverted Doherty Configuration
621(9)
References
630(5)
Index 635
Dr. Andrei Grebennikov is an Engineering Fellow at RFaxis, Inc., Irvine, CA. Dr. Grebennikov has worked as an engineer and researcher for Skyworks Solutions, Woburn, MA, M/A-COM Eurotec, Ireland, Infineon Technologies, Germany/Austria, and Bell Labs, Alcatel-Lucent, Ireland, and has taught at the University of Linz in Austria, the Institute of Microelectronics in Singapore, and the Moscow Technical University of Communications and Informatics. He is an author or co-author of more than 80 technical papers, 5 books, and 15 European and US patents, and is a Senior Member of the IEEE and a Member of the Editorial Board of the International Journal of RF and Microwave Computer-Aided Engineering. He received his Dipl. Ing. degree in radio electronics from the Moscow Institute of Physics and Technology, and a Ph.D. in radio engineering from the Moscow Technical University of Communications and Informatics.