Muutke küpsiste eelistusi

E-raamat: Ricci Flow: Techniques and Applications

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 148,51 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book gives a presentation of topics in Hamilton's Ricci flow for graduate students and mathematicians interested in working in the subject. The authors have aimed at presenting technical material in a clear and detailed manner. In this volume, geometric aspects of the theory have been emphasized. The book presents the theory of Ricci solitons, Kahler-Ricci flow, compactness theorems, Perelman's entropy monotonicity and no local collapsing, Perelman's reduced distance function and applications to ancient solutions, and a primer of 3-manifold topology. Various technical aspects of Ricci flow have been explained in a clear and detailed manner. The authors have tried to make some advanced material accessible to graduate students and nonexperts. The book gives a rigorous introduction to Perelman's work and explains technical aspects of Ricci flow useful for singularity analysis. Throughout, there are appropriate references so that the reader may further pursue the statements and proofs of the variou
Preface ix
What this book is about ix
Highlights of Part I xi
Acknowledgments xiii
Contents of Part I of Volume Two xvii
Ricci Solitons
1(54)
General solitons and their canonical forms
2(4)
Differentiating the soliton equation --- local and global analysis
6(5)
Warped products and 2-dimensional solitons
11(6)
Constructing the Bryant steady soliton
17(9)
Rotationally symmetric expanding solitons
26(6)
Homogeneous expanding solitons
32(9)
When breathers and solitons are Einstein
41(3)
Perelman's energy and entropy in relation to Ricci solitons
44(2)
Buscher duality transformation of warped product solitons
46(4)
Summary of results and open problems on Ricci solitons
50(2)
Notes and commentary
52(3)
Kahler--Ricci Flow and Kahler--Ricci Solitons
55(72)
Introduction to Kahler manifolds
55(7)
Connection, curvature, and covariant differentiation
62(8)
Existence of Kahler--Einstein metrics
70(4)
Introduction to the Kahler--Ricci flow
74(6)
Existence and convergence of the Kahler--Ricci flow
80(15)
Survey of some results for the Kahler--Ricci flow
95(2)
Examples of Kahler--Ricci solitons
97(6)
Kahler--Ricci flow with nonnegative bisectional curvature
103(6)
Matrix differential Harnack estimate for the Kahler--Ricci flow
109(9)
Linear and interpolated differential Harnack estimates
118(6)
Notes and commentary
124(3)
The Compactness Theorem for Ricci Flow
127(22)
Introduction and statements of the compactness theorems
127(5)
Convergence at all times from convergence at one time
132(6)
Extensions of Hamilton's compactness theorem
138(4)
Applications of Hamilton's compactness theorem
142(6)
Notes and commentary
148(1)
Proof of the Compactness Theorem
149(40)
Outline of the proof
149(1)
Approximate isometries, compactness of maps, and direct limits
150(8)
Construction of good coverings by balls
158(7)
The limit manifold (Mn∞, g∞)
165(10)
Center of mass and nonlinear averages
175(12)
Notes and commentary
187(2)
Energy, Monotonicity, and Breathers
189(32)
Energy, its first variation, and the gradient flow
190(7)
Monotonicity of energy for the Ricci flow
197(6)
Steady and expanding breather solutions revisited
203(11)
Classical entropy and Perelman's energy
214(5)
Notes and commentary
219(2)
Entropy and No Local Collapsing
221(64)
The entropy functional W and its monotonicity
221(14)
The functionals μ and ν
235(7)
Shrinking breathers are shrinking gradient Ricci solitons
242(4)
Logarithmic Sobolev inequality
246(5)
No finite time local collapsing: A proof of Hamilton's little loop conjecture
251(13)
Improved version of no local collapsing and diameter control
264(9)
Some further calculations related to F and W
273(11)
Notes and commentary
284(1)
The Reduced Distance
285(96)
The L-length and distance for a static metric
286(2)
The L-length and the L-distance
288(8)
The first variation of L-length and existence of L-geodesics
296(10)
The gradient and time-derivative of the L-distance function
306(6)
The second variation formula for L and the Hessian of L
312(10)
Equations and inequalities satisfied by L and l
322(13)
The l-function on Einstein solutions and Ricci solitons
335(10)
L-Jacobi fields and the L-exponential map
345(18)
Weak solution formulation
363(16)
Notes and commentary
379(2)
Applications of the Reduced Distance
381(52)
Reduced volume of a static metric
381(5)
Reduced volume for Ricci flow
386(13)
A weakened no local collapsing theorem via the monotonicity of the reduced volume
399(7)
Backward limit of ancient κ-solution is a shrinker
406(11)
Perelman's Riemannian formalism in potentially infinite dimensions
417(15)
Notes and commentary
432(1)
Basic Topology of 3-Manifolds
433(12)
Essential 2-spheres and irreducible 3-manifolds
433(2)
Incompressible surfaces and the geometrization conjecture
435(4)
Decomposition theorems and the Ricci flow
439(3)
Notes and commentary
442(3)
Appendix A. Basic Ricci Flow Theory
445(32)
Riemannian geometry
445(11)
Basic Ricci flow
456(9)
Basic singularity theory for Ricci flow
465(5)
More Ricci flow theory and ancient solutions
470(4)
Classical singularity theory
474(3)
Appendix B. Other Aspects of Ricci Flow and Related Flows
477(24)
Convergence to Ricci solitons
477(5)
The mean curvature flow
482(8)
The cross curvature flow
490(10)
Notes and commentary
500(1)
Appendix C. Glossary
501(12)
Bibliography 513(18)
Index 531