Muutke küpsiste eelistusi

E-raamat: Rigid Body Dynamics Algorithms

  • Formaat: PDF+DRM
  • Ilmumisaeg: 10-Nov-2014
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9781489975607
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 221,68 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 10-Nov-2014
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9781489975607
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Rigid Body Dynamics Algorithms presents the subject of computational rigid-body dynamics through the medium of spatial 6D vector notation. It explains how to model a rigid-body system
and how to analyze it, and it presents the most comprehensive collection of the best rigid-body dynamics algorithms to be found in a single source. The use of spatial vector notation greatly reduces the volume of algebra which allows systems to be described using fewer equations and fewer quantities. It also allows problems to be solved in fewer steps, and solutions to be expressed more succinctly. In addition algorithms are explained simply and clearly, and are expressed in a compact form. The use of spatial vector notation facilitates the implementation of dynamics algorithms on a computer: shorter, simpler code that is easier to write, understand and debug, with no loss of efficiency.

Arvustused

From the reviews: "This book deals with a numerical treatment of different problems in the dynamics of rigid-body systems which arise mainly in robotics ... . is centered on mechanical models made up of many rigid bodies connected by joints. ... The book is written in a clear way. Each chapter begins by stating the objectives to be achieved. The algorithms presented are well documented and worked examples are also given. ... the bibliography close this useful book on the computational approach to the dynamics of rigid-body systems." (A. San Miguel, Mathematical Reviews, Issue 2011 h)

Preface v
Introduction
1(6)
Dynamics Algorithms
1(2)
Spatial Vectors
3(1)
Units and Notation
4(1)
Readers' Guide
5(1)
Further Reading
6(1)
Spatial Vector Algebra
7(32)
Mathematical Preliminaries
7(3)
Spatial Velocity
10(3)
Spatial Force
13(2)
Plucker Notation
15(1)
Line Vectors and Free Vectors
16(1)
Scalar Product
17(1)
Using Spatial Vectors
18(2)
Coordinate Transforms
20(3)
Spatial Cross Products
23(2)
Differentiation
25(3)
Acceleration
28(3)
Momentum
31(1)
Inertia
32(3)
Equation of Motion
35(1)
Inverse Inertia
36(1)
Planar Vectors
37(1)
Further Reading
38(1)
Dynamics of Rigid Body Systems
39(26)
Equations of Motion
40(2)
Constructing Equations of Motion
42(4)
Vector Subspaces
46(4)
Classification of Constraints
50(3)
Joint Constraints
53(4)
Dynamics of a Constrained Rigid Body
57(3)
Dynamics of a Multibody System
60(5)
Modelling Rigid Body Systems
65(24)
Connectivity
66(7)
Geometry
73(2)
Denavit-Hartenberg Parameters
75(3)
Joint Models
78(6)
Spherical Motion
84(3)
A Complete System Model
87(2)
Inverse Dynamics
89(12)
Algorithm Complexity
89(1)
Recurrence Relations
90(2)
The Recursive Newton-Euler Algorithm
92(5)
The Original Version
97(2)
Additional Notes
99(2)
Forward Dynamics --- Inertia Matrix Methods
101(18)
The Joint-Space Inertia Matrix
102(2)
The Composite-Rigid-Body Algorithm
104(4)
A Physical Interpretation
108(2)
Branch-Induced Sparsity
110(2)
Sparse Factorization Algorithms
112(5)
Additional Notes
117(2)
Forward Dynamics --- Propagation Methods
119(22)
Articulated-Body Inertia
119(4)
Calculating Articulated-Body Inertias
123(5)
The Articulated-Body Algorithm
128(3)
Alternative Assembly Formulae
131(5)
Multiple Handles
136(5)
Closed Loop Systems
141(30)
Equations of Motion
141(2)
Loop Constraint Equations
143(2)
Constraint Stabilization
145(3)
Loop Joint Forces
148(1)
Solving the Equations of Motion
149(3)
Algorithm for C - τ
152(2)
Algorithm for K and k
154(2)
Algorithm for G and g
156(2)
Exploiting Sparsity in K and G
158(1)
Some Properties of Closed-Loop Systems
159(2)
Loop Closure Functions
161(3)
Inverse Dynamics
164(2)
Sparse Matrix Method
166(5)
Hybrid Dynamics and Other Topics
171(24)
Hybrid Dynamics
171(5)
Articulated-Body Hybrid Dynamics
176(3)
Floating Bases
179(2)
Floating-Base Forward Dynamics
181(2)
Floating-Base Inverse Dynamics
183(3)
Gears
186(3)
Dynamic Equivalence
189(6)
Accuracy and Efficiency
195(18)
Sources of Error
196(3)
The Sensitivity Problem
199(2)
Efficiency
201(8)
Symbolic Simplification
209(4)
Contact and Impact
213(28)
Single Point Contact
213(3)
Multiple Point Contact
216(3)
A Rigid-Body System with Contacts
219(3)
Inequality Constraints
222(2)
Solving Contact Equations
224(3)
Contact Geometry
227(3)
Impulsive Dynamics
230(5)
Soft Contact
235(4)
Further Reading
239(2)
A Spatial Vector Arithmetic
241(16)
Simple Planar Arithmetic
241(2)
Simple Spatial Arithmetic
243(2)
Compact Representations
245(4)
Axial Screw Transforms
249(3)
Some Efficiency Tricks
252(5)
Bibliography 257(8)
Symbols 265(2)
Index 267