Muutke küpsiste eelistusi

E-raamat: Risk Analytics: From Concept To Deployment

(S'pore Management Univ, S'pore)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 46,80 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Risk analytics has seen a spike in interest and demand with the quantification of risks and global regulatory requirements. Financial institutions like banks, in particular, have to show evidence of having measured credit, market and operational risks using numbers and models rather than qualitative judgments. These corporations already have massive databases but automating the process to translate data into risk parameters remains a desire in most of them. In the past, this was partly due to the lack of cost-effective tools to accomplish the task. Modeling was done using software with output codes not readily processed by databases. Data have to be manually extracted and run on the models with results input into the databases manually again. With the increasing acceptance of open source languages, database vendors have seen the value of integrating modeling capabilities into their products. That has made it possible to insert models developed using R, Python or other languages directly into SQL scripts used for database transactions. As R or Python are free, there is no additional cost involved. Nevertheless, deploying solutions developed to automate the process remains a challenge. While not comprehensive in dealing with all facets of risks, the author with his wealth of consulting experience, aims to contribute to the development of risk professionals who will be able to progress beyond theories and concepts to create solutions that can support planning and automated decision-making.



"Risk analytics has seen a spike in interest and demand with the quantification of risks and global regulatory requirements. Financial institutions like banks, in particular, have to show evidence of having measured credit, market and operational risks using numbers and models rather than qualitative judgments. These corporations already have massive databases but automating the process to translate data into risk parameters remains a desire in most of them. In the past, this was partly due to the lack of cost-effective tools to accomplish the task. Modeling was done using software with output codes not readily processed by databases. Data have to be manually extracted and run on the models with results input into the databases manually again. With the increasing acceptance of open source languages, database vendors have seen the value of integrating modeling capabilities into their products. That has made it possible to insert models developed using R, Python or other languages directly into SQL scriptsused for database transactions. As R or Python are free, there is no additional cost involved. Nevertheless, deploying solutions developed to automate the process remains a challenge. While not comprehensive in dealing with all facets of risks, the author with his wealth of consulting experience, aims to contribute to the development of risk professionals who will be able to progress beyond theories and concepts to create solutions that can support planning and automated decision-making"--
Foreword v
About the Author vii
Chapter 1 Introduction
1(6)
Chapter 2 Risk Typology and Data Implications
7(8)
2.1 Data Needed
10(2)
2.2 Data Stewardship
12(1)
2.3 Deployment for Use
13(2)
Chapter 3 Risk Analytics Landscape
15(32)
3.1 Software and Solutions
15(6)
3.1.1 Request for Proposal (RFP)
17(1)
3.1.2 Terms of Reference (TOR)
17(2)
3.1.3 Proof of Concept (POC)
19(1)
3.1.4 System Integration Test (SIT)
20(1)
3.1.5 User Acceptance Test (UAT)
21(1)
3.2 Data Table and Data Type
21(3)
3.3 Modeling
24(13)
3.3.1 Business understanding
26(2)
3.3.2 Data understanding
28(2)
3.3.3 Data preparation
30(1)
3.3.4 Modeling
31(2)
3.3.5 Evaluation
33(4)
3.3.6 Deployment
37(1)
3.4 Data Flow
37(4)
3.4.1 Data quality and quantity
37(1)
3.4.2 External and internal data integration
38(1)
3.4.3 Security and access
39(1)
3.4.4 Analysis and decision-making
40(1)
3.5 Deployment
41(3)
3.6 Governance
44(1)
3.7 Need for Integration
45(2)
Chapter 4 Embedded R
47(10)
4.1 ORACLEHOME and R_HOME
48(1)
4.2 Pluggable Database
49(1)
4.3 RQUSER
49(2)
4.4 R Packages and RStudio
51(2)
4.5 Oracle R Enterprise (ORE)
53(4)
Chapter 5 Data Audit
57(12)
5.1 Missing
57(2)
5.2 Invalid
59(2)
5.3 Unreliable
61(2)
5.4 Outdated
63(1)
5.5 Inconsistent
64(1)
5.6 Data Audit Report
65(1)
5.7 Treatments for Problematic Data Values
66(3)
Chapter 6 Data Warehousing
69(10)
6.1 Legacy System Data
69(3)
6.1.1 Overwrite mode
70(1)
6.1.2 Record removal
70(1)
6.1.3 Legal priority
71(1)
6.1.4 Datatype
71(1)
6.2 Enterprise Data Warehouse vs Specialized Data Mart
72(2)
6.2.1 Data stewardship
72(1)
6.2.2 Access and security
73(1)
6.2.3 Update frequency
73(1)
6.2.4 Designed to fail
73(1)
6.3 Extraction, Transfer, Load (ETL)
74(5)
6.3.1 Data cleansing
74(2)
6.3.2 Mappings
76(1)
6.3.3 Rejected records
77(1)
6.3.4 Corrections
78(1)
Chapter 7 Analytical Data Sphere
79(12)
7.1 Archive, Not Overwrite
81(1)
7.2 Dropdown List, Not Free Text
82(1)
7.3 Meaningful Categories
83(1)
7.4 Optimal Number of Categories
84(1)
7.5 Expandable Data Tables
85(1)
7.6 Dated
86(1)
7.7 Useful and New Primary Keys
86(1)
7.8 Updatable
87(2)
7.9 Accessible
89(2)
Chapter 8 Risks in Financial Institutions
91(8)
8.1 Profiling What Is Ahead
92(3)
8.2 External Warning Indicators
95(1)
8.3 Operational Concerns
96(1)
8.4 Portfolio Composition
97(2)
Chapter 9 Common Risk Models and Analytics
99(20)
9.1 Expected and Unexpected Losses
99(2)
9.2 Value at Risk
101(7)
9.3 Securities Portfolio Optimization
108(1)
9.4 Correlation
108(3)
9.5 Concentration Index
111(1)
9.6 Operational Loss Distribution
112(1)
9.7 Stress Testing
113(1)
9.8 Weight of Evidence
114(5)
Chapter 10 Internal Rating System
119(32)
10.1 Developing an ORR
121(1)
10.2 Data Audit
122(5)
10.3 Predictors and Target
127(2)
10.4 Weight of Evidence (WoE)
129(3)
10.5 Training a Model
132(3)
10.6 Risk Grades/Ratings
135(7)
10.7 Backtesting
142(9)
Chapter 11 Deployment
151(10)
11.1 Default and Reageing
157(2)
11.2 Enterprise Data Warehouse or Data Mart
159(2)
Chapter 12 Through The Cycle (TTC) Updating
161(8)
Chapter 13 Desktop Analytics
169(30)
13.1 Basic Excel R Toolkit (BERT)
169(1)
13.2 Probabilities and PD
170(5)
13.2.1 Cumulative and marginal probabilities
171(1)
13.2.2 Joint, conditional and unconditional probabilities
172(1)
13.2.3 Binomial lattice
173(2)
13.3 Loss Given Default (LGD)
175(2)
13.4 Credit Valuation Adjustment (CVA), Debit Valuation Adjustment (DVA) and xVA
177(8)
13.4.1 Spot, forward and par rates
180(1)
13.4.2 Interest rate binomial lattice
181(2)
13.4.3 Counterparty default
183(2)
13.5 R with Excel
185(14)
Chapter 14 Resources
199(4)
14.1 RStudio
199(1)
14.2 Packages
200(1)
14.3 Free Data
201(2)
Annex A Meeting of Minds Questionnaire 203(8)
Annex B 211(12)
Index 223