Muutke küpsiste eelistusi

E-raamat: RLS Wiener Smoother from Randomly Delayed Observations in Linear Discrete-Time Systems

  • Formaat: 102 pages
  • Ilmumisaeg: 01-May-2013
  • Kirjastus: Nova Science Publishers Inc
  • ISBN-13: 9781626187733
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 234,65 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 102 pages
  • Ilmumisaeg: 01-May-2013
  • Kirjastus: Nova Science Publishers Inc
  • ISBN-13: 9781626187733
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

In this book, the new recursive least-squares (RLS) Wiener filter and fixed-point smoother are designed from randomly delayed observed values by one sampling time in linear discrete-time stochastic systems. The probability is given as a function of time. If the conditional probability is not a function of time, the length of the derivation for the RLS Wiener estimators becomes shorter than the current RLS Wiener algorithms for the fixed-point smoothing and filtering estimates. The proof for deriving the RLS Wiener fixed-point smoother and filter is shown in the case of the conditional probability as a function of time k. A numerical simulation example in Chapter 4 shows that the fixed-point smoothing and filtering algorithms, proposed in this book, are feasible. The RLS Wiener estimators do not use the information of the variance of the input noise and the input matrix in the state equation, in comparison with the estimation technique by the Kalman filter. Hence, the RLS Wiener estimation technique has an advantage that the estimation accuracy of the RLS Wiener estimators is not influenced by the estimation errors for the input noise variance and the input matrix.
Acknowledgments vii
Summary ix
Chapter 1 Introduction
1(4)
Chapter 2 Least-squares fixed-point smoothing problem
5(6)
Chapter 3 RLS Wiener estimation algorithms
11(22)
Chapter 4 A numerical simulation example
33(6)
Chapter 5 Conclusions
39(2)
Appendix 41(48)
References 89(2)
Index 91