Muutke küpsiste eelistusi

E-raamat: Roark's Formulas for Stress and Strain, 9E

  • Formaat: 960 pages
  • Ilmumisaeg: 03-Apr-2020
  • Kirjastus: McGraw-Hill Education
  • Keel: eng
  • ISBN-13: 9781260453768
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 112,32 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 960 pages
  • Ilmumisaeg: 03-Apr-2020
  • Kirjastus: McGraw-Hill Education
  • Keel: eng
  • ISBN-13: 9781260453768
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product.

The industry-standard resource for stress and strain formulas fully updated for the latest advances and restructured for ease of use

This newly designed and thoroughly revised guide contains accurate and thorough tabulated formulations that can be applied to the stress analysis of a comprehensive range of structural components. Roark's Formulas for Stress and Strain, Ninth Edition has been reorganized into a user-friendly format that makes it easy to access and apply the information. The book explains all of the formulas and analyses needed by designers and engineers for mechanical system design. You will get a solid grounding in the theory behind each formula along with real-world applications that cover a wide range of materials.

Coverage includes:

    • The behavior of bodies under stress
    • Analytical, numerical, and experimental methods
    • Tension, compression, shear, and combined stress
    • Beams and curved beams
    • Torsion, flat plates, and columns
    • Shells of revolution, pressure vessels, and pipes
    • Bodies under direct pressure and shear stress
    • Elastic stability
    • Dynamic and temperature stresses
    • Stress concentration
    • Fatigue and fracture
    • Stresses in fasteners and joints
    • Composite materials and solid biomechanics

Preface to the Ninth Edition ix
Preface to the First Edition xi
List of Tables xiii
Chapter 1 Introduction 1(14)
1.1 Terminology
1(1)
1.2 State Properties, Units, and Conversions
1(2)
1.3 Contents
3(10)
1.4 References
13(2)
Chapter 2 Stress and Strain: Important Relationships 15(30)
2.1 Stress
15(4)
2.2 Strain and the Stress-Strain Relations
19(3)
2.3 Stress Transformations
22(12)
2.4 Strain Transformations
34(1)
2.5 Mohr's Circle
34(3)
2.6 Mohr's Circles for 3D Stress Analysis
37(3)
2.7 Tables
40(4)
2.8 References
44(1)
Chapter 3 The Behavior of Bodies under Stress 45(36)
3.1 Methods of Loading
45(1)
3.2 Elasticity; Proportionality of Stress and Strain
46(1)
3.3 Factors Affecting Elastic Properties
47(1)
3.4 Load Deformation Relation for a Body
48(1)
3.5 Plasticity
48(1)
3.6 Creep and Rupture under Long-Time Loading
48(2)
3.7 Criteria of Elastic Failure and of Rupture
50(3)
3.8 Fatigue
53(4)
3.9 Brittle Fracture
57(1)
3.10 Stress Concentration
58(2)
3.11 Effect of Form and Scale on Strength; Rupture Factor
60(1)
3.12 Prestressing
61(1)
3.13 Elastic Stability
62(3)
3.14 Tables: Mechanical Properties of Materials
65(13)
3.15 References
78(3)
Chapter 4 Principles and Analytical Methods 81(12)
4.1 Equations of Motion and of Equilibrium
81(1)
4.2 Principle of Superposition
81(1)
4.3 Principle of Reciprocal Deflections
82(1)
4.4 Method of Consistent Deformations (Strain Compatibility)
82(1)
4.5 Energy Methods
82(1)
4.6 Castigliano's Theorem
83(6)
4.7 Dimensional Analysis
89(1)
4.8 Remarks on the Use of Formulas
90(2)
4.9 References
92(1)
Chapter 5 Numerical Methods 93(16)
5.1 The Finite Difference Method
93(1)
5.2 The Finite Element Method
94(5)
5.3 The Boundary Element Method
99(6)
5.4 Zeroes of Polynomials
105(1)
5.5 Solution of Differential Equations
106(1)
5.6 Numerical Integration
106(1)
5.7 References
107(1)
5.8 Additional Uncited References for Finite Elements
108(1)
5.9 Additional Uncited References for Boundary Elements
108(1)
Chapter 6 Experimental Methods 109(28)
6.1 Measurement Techniques
109(5)
6.2 Electrical Resistance Strain Gages
114(10)
6.3 Detection of Plastic Yielding
124(1)
6.4 Analogies
124(1)
6.5 Wheatstone Bridge
125(1)
6.6 Nondestructive Testing
126(3)
6.7 Tables
129(6)
6.8 References
135(2)
Chapter 7 Tension, Compression, Shear, and Combined Stress 137(14)
7.1 Bar under Axial Tension (or Compression); Common Case
137(2)
7.2 Bar under Tension (or Compression); Special Cases
139(2)
7.3 Composite Members
141(2)
7.4 Trusses
143(2)
7.5 Body under Pure Shear Stress
145(2)
7.6 Cases of Direct Shear Loading
147(1)
7.7 Combined Stress
147(4)
Chapter 8 Beams; Flexure of Straight Bars 151(118)
8.1 Straight Beams (Common Case) Elastically Stressed
151(10)
8.2 Composite Beams and Bimetallic Strips
161(3)
8.3 Three-Moment Equation
164(1)
8.4 Rigid Frames
165(5)
8.5 Beams on Elastic Foundations
170(4)
8.6 Deformation Due to the Elasticity of Fixed Supports
174(1)
8.7 Beams under Simultaneous Axial and Transverse Loading
175(4)
8.8 Beams of Variable Section
179(6)
8.9 Slotted Beams
185(1)
8.10 Beams of Relatively Great Depth
185(4)
8.11 Beams of Relatively Great Width
189(3)
8.12 Beams with Wide Flanges; Shear Lag
192(1)
8.13 Beams with Very Thin Webs
193(1)
8.14 Beams Not Loaded in Plane of Symmetry; Flexural Center
194(2)
8.15 Straight Uniform Beams (Common Case); Ultimate Strength
196(3)
8.16 Plastic, or Ultimate Strength, Design
199(4)
8.17 Tables
203(63)
8.18 References
266(3)
Chapter 9 Curved Beams 269(80)
9.1 Bending in the Plane of the Curve
269(7)
9.2 Deflection of Curved Beams
276(8)
9.3 Circular Rings and Arches
284(9)
9.4 Elliptical Rings
293(1)
9.5 Curved Beams Loaded Normal to Plane of Curvature
294(6)
9.6 Tables
300(48)
9.7 References
348(1)
Chapter 10 Torsion 349(38)
10.1 Straight Bars of Uniform Circular Section under Pure Torsion
349(1)
10.2 Bars of Noncircular Uniform Section under Pure Torsion
350(5)
10.3 Effect of End Constraint
355(7)
10.4 Effect of Longitudinal Stresses
362(1)
10.5 Ultimate Strength of Bars in Torsion
363(1)
10.6 Torsion of Curved Bars; Helical Springs
363(3)
10.7 Tables
366(18)
10.8 References
384(3)
Chapter 11 Flat Plates 387(76)
11.1 Common Case
387(1)
11.2 Bending of Uniform-Thickness Plates with Circular Boundaries
388(4)
11.3 Circular-Plate Deflection Due to Shear
392(1)
11.4 Bimetallic Plates
393(4)
11.5 Nonuniform Loading of Circular Plates
397(1)
11.6 Circular Plates on Elastic Foundations
397(1)
11.7 Circular Plates of Variable Thickness
398(2)
11.8 Disk Springs
400(1)
11.9 Narrow Ring under Distributed Torque about Its Axis
401(1)
11.10 Bending of Uniform-Thickness Plates with Straight Boundaries
402(1)
11.11 Effect of Large Deflection; Diaphragm Stresses
403(4)
11.12 Plastic Analysis of Plates
407(1)
11.13 Ultimate Strength
407(2)
11.14 Tables
409(49)
11.15 References
458(5)
Chapter 12 Columns and Other Compression Members 463(22)
12.1 Columns; Common Case
463(4)
12.2 Local Buckling
467(4)
12.3 Strength of Latticed Columns
471(1)
12.4 Eccentric Loading; Initial Curvature
472(2)
12.5 Columns under Combined Compression and Bending
474(2)
12.6 Thin Plates with Stiffeners
476(2)
12.7 Short Prisms under Eccentric Loading
478(3)
12.8 Table
481(2)
12.9 References
483(2)
Chapter 13 Shells of Revolution; Pressure Vessels; Pipes 485(100)
13.1 Circumstances and General State of Stress
485(1)
13.2 Thin Shells of Revolution under Distributed Loadings Producing Membrane Stresses Only
485(3)
13.3 Thin Shells of Revolution under Concentrated or Discontinuous Loadings Producing Bending and Membrane Stresses
488(12)
13.4 Thin Multielement Shells of Revolution
500(11)
13.5 Thin Shells of Revolution under External Pressure
511(2)
13.6 Thick Shells of Revolution
513(2)
13.7 Pipe on Supports at Intervals
515(2)
13.8 Tables
517(64)
13.9 References
581(4)
Chapter 14 Bodies under Direct Bearing and Shear Stress 585(16)
14.1 Stress Due to Pressure between Elastic Bodies
585(4)
14.2 Rivets and Riveted Joints
589(3)
14.3 Miscellaneous Cases
592(3)
14.4 Table
595(3)
14.5 References
598(3)
Chapter 15 Elastic Stability 601(30)
15.1 General Considerations
601(1)
15.2 Buckling of Bars
602(2)
15.3 Buckling of Flat and Curved Plates
604(1)
15.4 Buckling of Shells
605(3)
15.5 Tables
608(18)
15.6 References
626(5)
Chapter 16 Dynamic and Temperature Stresses 631(40)
16.1 Dynamic Loadings; General Conditions
631(1)
16.2 Body in a Known State of Motion
631(8)
16.3 Impact and Sudden Loading
639(1)
16.4 Impact and Sudden Loading; Approximate Formulas
640(2)
16.5 Remarks on Stress Due to Impact
642(1)
16.6 Vibration
643(5)
16.7 Temperature Stresses
648(5)
16.8 Tables
653(16)
16.9 References
669(2)
Chapter 17 Stress Concentration 671(26)
17.1 Static Stress and Strain Concentration Factors
671(5)
17.2 Stress Concentration Reduction Methods
676(3)
17.3 Tables
679(16)
17.4 References
695(2)
Chapter 18 Fatigue and Fracture 697(26)
18.1 Fatigue in Materials
697(1)
18.2 Fatigue Testing
698(2)
18.3 Fatigue and Crack Growth
700(1)
18.4 Creep
700(1)
18.5 Fracture Mechanics
701(2)
18.6 The Stress Intensity Factor
703(3)
18.7 Fracture Toughness
706(2)
18.8 Crack Tip Plasticity
708(1)
18.9 The Energy Balance Approach of Fracture
709(1)
18.10 The J Integral
710(2)
18.11 Tables
712(10)
18.12 References
722(1)
Chapter 19 Stresses in Fasteners, Joints, and Gears 723(20)
19.1 Welding
723(2)
19.2 Analysis of Welded Joints
725(3)
19.3 Strength of Welded Joints
728(5)
19.4 Riveted and Bolted Joints
733(1)
19.5 Shearing and Failure Modes in Riveted Joints
733(2)
19.6 Eccentric Loading of Riveted Joints
735(3)
19.7 Bolt Strength and Design
738(1)
19.8 Gearing and Gear Stress
739(2)
19.9 References
741(2)
Chapter 20 Composite Materials 743(42)
20.1 Composite Materials Classifications and Components
743(3)
20.2 Mechanics of Composite Materials
746(1)
20.3 Macromechanics of a Layer (Lamina)
746(3)
20.4 Micromechanics of a Layer (Lamina)
749(3)
20.5 Failure Criterion for a Layer (Lamina)
752(4)
20.6 Macromechanics of a Laminate
756(1)
20.7 Classical Lamination Theory
757(1)
20.8 Macromechanics of a Laminate: Stress and Strain in a Laminate
758(7)
20.9 Inversion of Stiffness Equation in a Laminate
765(1)
20.10 Example of Stresses and Strains in a Laminate
766(3)
20.11 Strength and Failure Analyses of Laminate
769(4)
20.12 Composite Sandwich Structures
773(2)
20.13 Composite Cellular Structures
775(2)
20.14 Tables
777(5)
20.15 References
782(3)
Chapter 21 Solid Biomechanics 785(42)
21.1 Introduction
785(1)
21.2 Biomechanics of Bone
785(5)
21.3 Biomechanics of Articular Cartilage
790(1)
21.4 Biomechanics of Tendons and Ligaments
791(2)
21.5 Biomechanics of Muscles
793(2)
21.6 Biomechanics of Joints
795(1)
21.7 Biomechanics of the Knee
795(2)
21.8 Biomechanics of the Hip
797(3)
21.9 Biomechanics of the Spine
800(2)
21.10 Biomechanics of the Lumbar Spine
802(4)
21.11 Biomechanics of the Cervical Spine
806(3)
21.12 Biomechanics of the Shoulder
809(1)
21.13 Biomechanics of the Elbow
810(1)
21.14 Human Factors in Design
811(3)
21.15 Implants and Prostheses
814(1)
21.16 Hip Implants
814(2)
21.17 Knee Implants
816(1)
21.18 Other Implants
817(1)
21.19 Biomaterials
817(3)
21.20 Tables
820(4)
21.21 References
824(2)
21.22 Glossary
826(1)
Appendix A Properties of a Plane Area 827(20)
Appendix B Mathematical Formulas and Matrices 847(28)
Appendix C Glossary 875(10)
Index 885
Richard G. Budynas is Professor Emeritus of the Kate Gleason College of Engineering at Rochester Institute of Technology. He has over 40 years experience in teaching and practicing mechanical engineering design. He is the author of a McGraw-Hill textbook, Advanced Strength and Applied Stress Analysis, Second Edition; and co-author of a McGraw-Hill reference book, Roark's Formulas for Stress and Strain, Seventh Edition. He was awarded the BME of Union College, MSME of the University of Rochester, and the Ph.D. of the University of Massachusetts. He is a licensed Professional Engineer in the state of New York.