Preface |
|
x | |
|
|
xiii | |
|
|
1 | (42) |
|
1.1 Robot Programming Methods |
|
|
2 | (1) |
|
1.2 Programming by Demonstration |
|
|
3 | (1) |
|
1.3 Historical Overview of Robot PbD |
|
|
4 | (2) |
|
1.4 PbD System Architecture |
|
|
6 | (15) |
|
1.4.1 Learning Interfaces |
|
|
8 | (2) |
|
1.4.1.1 Sensor-Based Techniques |
|
|
10 | (3) |
|
1.4.2 Task Representation and Modeling |
|
|
13 | (1) |
|
|
14 | (2) |
|
|
16 | (2) |
|
1.4.3 Task Analysis and Planning |
|
|
18 | (1) |
|
|
18 | (1) |
|
|
19 | (1) |
|
1.4.4 Program Generation and Task Execution |
|
|
20 | (1) |
|
|
21 | (4) |
|
|
25 | (7) |
|
1.6.1 Extracting the Teacher's Intention from Observations |
|
|
26 | (1) |
|
1.6.2 Robust Learning from Observations |
|
|
27 | (1) |
|
1.6.2.1 Robust Encoding of Demonstrated Motions |
|
|
27 | (2) |
|
1.6.2.2 Robust Reproduction of PbD Plans |
|
|
29 | (1) |
|
1.6.3 Metrics for Evaluation of Learned Skills |
|
|
29 | (1) |
|
1.6.4 Correspondence Problem |
|
|
30 | (1) |
|
1.6.5 Role of the Teacher in PbD |
|
|
31 | (1) |
|
|
32 | (11) |
|
|
33 | (10) |
|
|
43 | (6) |
|
2.1 Optical Tracking Systems |
|
|
43 | (1) |
|
|
44 | (2) |
|
|
46 | (3) |
|
|
46 | (3) |
|
|
49 | (8) |
|
|
50 | (1) |
|
3.2 Probabilistic Learning |
|
|
51 | (1) |
|
3.3 Data Scaling and Aligning |
|
|
51 | (4) |
|
|
52 | (1) |
|
3.3.2 Dynamic Time Warping (DTW) |
|
|
52 | (3) |
|
|
55 | (2) |
|
|
55 | (2) |
|
|
57 | (16) |
|
4.1 Gaussian Mixture Model (GMM) |
|
|
57 | (2) |
|
4.2 Hidden Markov Model (HMM) |
|
|
59 | (5) |
|
|
61 | (1) |
|
|
62 | (1) |
|
|
62 | (1) |
|
4.2.4 Continuous Observation Data |
|
|
63 | (1) |
|
4.3 Conditional Random Fields (CRFs) |
|
|
64 | (4) |
|
|
65 | (1) |
|
4.3.2 Training and Inference |
|
|
66 | (2) |
|
4.4 Dynamic Motion Primitives (DMPs) |
|
|
68 | (2) |
|
|
70 | (3) |
|
|
70 | (3) |
|
|
73 | (56) |
|
5.1 Gaussian Mixture Regression |
|
|
73 | (1) |
|
|
74 | (43) |
|
5.2.1 Extraction of Key Points as Trajectories Features |
|
|
75 | (5) |
|
5.2.2 HMM-Based Modeling and Generalization |
|
|
80 | (1) |
|
|
80 | (1) |
|
|
81 | (2) |
|
|
83 | (4) |
|
|
87 | (13) |
|
5.2.2.5 Comparison with Related Work |
|
|
100 | (7) |
|
5.2.3 CRF Modeling and Generalization |
|
|
107 | (1) |
|
|
107 | (1) |
|
5.2.3.2 Feature Functions Formation |
|
|
107 | (2) |
|
5.2.3.3 Trajectories Encoding and Generalization |
|
|
109 | (2) |
|
|
111 | (4) |
|
5.2.3.5 Comparisons with Related Work |
|
|
115 | (2) |
|
5.3 Locally Weighted Regression |
|
|
117 | (4) |
|
5.4 Gaussian Process Regression |
|
|
121 | (1) |
|
|
122 | (7) |
|
|
123 | (6) |
|
|
129 | (60) |
|
6.1 Background and Related Work |
|
|
129 | (3) |
|
6.2 Kinematic Robot Control |
|
|
132 | (2) |
|
6.3 Vision-Based Trajectory Tracking Control |
|
|
134 | (7) |
|
6.3.1 Image-Based Visual Servoing (IBVS) |
|
|
134 | (1) |
|
6.3.2 Position-Based Visual Servoing (PBVS) |
|
|
135 | (6) |
|
6.3.3 Advanced Visual Servoing Methods |
|
|
141 | (1) |
|
6.4 Image-Based Task Planning |
|
|
141 | (15) |
|
6.4.1 Image-Based Learning Environment |
|
|
141 | (1) |
|
|
142 | (1) |
|
6.4.3 Second-Order Conic Optimization |
|
|
143 | (1) |
|
|
144 | (2) |
|
|
146 | (1) |
|
6.4.5.1 Image-Space Constraints |
|
|
146 | (3) |
|
6.4.5.2 Cartesian Space Constraints |
|
|
149 | (1) |
|
6.4.5.3 Robot Manipulator Constraints |
|
|
150 | (2) |
|
|
152 | (4) |
|
6.5 Robust Image-Based Tracking Control |
|
|
156 | (27) |
|
|
157 | (1) |
|
|
158 | (3) |
|
|
161 | (1) |
|
|
162 | (4) |
|
|
166 | (7) |
|
|
173 | (4) |
|
|
177 | (1) |
|
6.5.3 Robustness Analysis and Comparisons with Other Methods |
|
|
177 | (6) |
|
|
183 | (2) |
|
|
185 | (4) |
|
|
185 | (4) |
Index |
|
189 | |