Muutke küpsiste eelistusi

E-raamat: Robust Computational Techniques for Boundary Layers

(Maxwell Technologies Inc., San Diego, California, USA Maxwell Technologies Inc., San Diego, California, USA), , , ,
  • Formaat: 256 pages
  • Ilmumisaeg: 30-Mar-2000
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781482285727
  • Formaat - PDF+DRM
  • Hind: 80,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 256 pages
  • Ilmumisaeg: 30-Mar-2000
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781482285727

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Constructs numerical methods for solving problems involving differential equations with boundary layers in their solutions. Presents new systematic numerical techniques, and shows how these techniques can be adapted in a natural way to real flow problems, and how they can be used to construct benchmark solutions for comparison with solutions found using other numerical techniques. Explains ideas through physical insight, model problems, and computational experiments and provides details of linear solvers used in the computations. The editor is affiliated with Kent State University. Annotation c. Book News, Inc., Portland, OR (booknews.com)

Current standard numerical methods are of little use in solving mathematical problems involving boundary layers. In Robust Computational Techniques for Boundary Layers, the authors construct numerical methods for solving problems involving differential equations that have non-smooth solutions with singularities related to boundary layers. They present a new numerical technique that provides precise results in the boundary layer regions for the problems discussed in the book. They show that this technique can be adapted in a natural way to a real flow problem, and that it can be used to construct benchmark solutions for comparison with solutions found using other numerical techniques.

Focusing on robustness, simplicity, and wide applicability rather than on optimality, Robust Computational Techniques for Boundary Layers provides readers with an understanding of the underlying principles and the essential components needed for the construction of numerical methods for boundary layer problems. It explains the fundamental ideas through physical insight, model problems, and computational experiments and gives details of the linear solvers used in the computations so that readers can implement the methods and reproduce the numerical results.
Introduction to numerical methods for problems with boundary layers
1(12)
The location and width of a boundary layer
1(2)
Norms for boundary layer functions
3(5)
Numerical methods
8(1)
Robust layer--resolving methods
9(2)
Some notation
11(2)
Numerical methods on uniform meshes
13(24)
Convection--diffusion problems in one dimension
13(3)
Centred finite difference method
16(3)
Monotone matrices and discrete comparison principles
19(2)
Upwind finite difference methods
21(5)
Fitted operator methods
26(5)
Neumann boundary conditions
31(3)
Error estimates in alternative norms
34(3)
Layer resolving methods for convection diffusion problems in one dimension
37(36)
Bakhvalov fitted meshes
37(2)
Piecewise-uniform fitted meshes
39(5)
Theoretical results
44(11)
Global accuracy on piecewise-uniform meshes
55(3)
Approximation of derivatives
58(9)
Alternative transition parameters
67(6)
The limitations of non-monotone numerical methods
73(20)
Non-physical behaviour of numerical solutions
73(1)
A non-monotone method
74(5)
Accuracy and order of convergence
79(2)
Tuning non-monotone methods
81(6)
Neumann boundary conditions
87(2)
Approximation of scaled derivatives
89(1)
Further considerations
90(3)
Convection-diffusion problems in a moving medium
93(28)
Motivation
93(2)
Convection-diffusion problems
95(2)
Location of regular and corner boundary layers
97(3)
Asymptotic nature of boundary layers
100(4)
Monotone parameter-uniform methods
104(2)
Computed errors and computed orders of convergence
106(2)
Numerical results
108(1)
Neumann boundary conditions
109(4)
Corner boundary layers
113(5)
Computational work
118(3)
Convection-diffusion problems with frictionless walls
121(26)
The origin of parabolic boundary layers
121(3)
Asymptotic nature
124(4)
Inadequacy of uniform meshes
128(5)
Fitted meshes for parabolic boundary layers
133(7)
Simple parameter-uniform analytic approximations
140(7)
Convection-diffusion problems with no slip boundary conditions
147(10)
No-slip boundary conditions
147(3)
Width of degenerate parabolic boundary layers
150(1)
Monotone fitted mesh method
151(1)
Numerical results
152(1)
Slip versus no-slip
153(4)
Experimental estimation of errors
157(18)
Theoretical error estimates
157(5)
Quick algorithms
162(4)
General algorithm
166(3)
Validation
169(1)
Practical uses of ε-uniform error parameters
170(1)
Global error parameters
171(4)
Non-monotone methods in two dimensions
175(16)
Non-monotone methods
175(1)
Tuned non-monotone method
175(7)
Difficulties in tuning non-monotone methods
182(7)
Weaknesses of non-monotone ε-uniform methods
189(2)
Linear and nonlinear reaction-diffusion problems
191(18)
Linear reaction diffusion problems
191(3)
Semilinear reaction-diffusion problems
194(1)
Nonlinear solvers
195(2)
Numerical methods on uniform meshes
197(4)
Numerical methods on piecewise-uniform meshes
201(5)
An alternative stopping criterion
206(3)
Prandl flow past a flat plate - Blasius' method
209(16)
Prandlt boundary layer equations
209(3)
Blasius' solution
212(1)
Singularly perturbed nature of Blasius' problem
213(1)
Robust layer-resolving method for Blasius' problem
214(2)
Numerical solution of Blasius' problem
216(1)
Computed error estimates for Blasius' problem
217(3)
Computed global error estimates for Blasius' solution
220(5)
Prandtl flow past a flat plate - direct method
225(24)
Prandlt problem in a finite domain
225(1)
Nonlinear finite difference method
226(2)
Solution of the nonlinear finite difference method
228(3)
Error analysis based on the finest mesh solution
231(3)
Error analysis based on the Blasius solution
234(13)
A benchmark solution for laminar flow
247(2)
References 249(4)
Index 253


Farrell, Paul; Hegarty, Alan; Miller, John M.; O'Riordan, Eugene; Shishkin, Grigory I.