Foreword |
|
xi | |
Preface |
|
xiii | |
1. INTRODUCTION |
|
1 | (24) |
|
|
2 | (14) |
|
|
4 | (3) |
|
|
7 | (2) |
|
|
9 | (2) |
|
|
11 | (2) |
|
|
13 | (1) |
|
|
13 | (2) |
|
|
15 | (1) |
|
2 Evaluation of Computer Vision Algorithms |
|
|
16 | (3) |
|
|
19 | (6) |
2. MAXIMUM LIKELIHOOD FRAMEWORK |
|
25 | (36) |
|
|
25 | (1) |
|
2 Statistical Distributions |
|
|
26 | (17) |
|
2.1 Gaussian Distribution |
|
|
27 | (11) |
|
2.2 Exponential Distribution |
|
|
38 | (3) |
|
|
41 | (2) |
|
|
43 | (2) |
|
|
44 | (1) |
|
4 Maximum Likelihood Estimators |
|
|
45 | (2) |
|
5 Maximum Likelihood in Relation to Other Approaches |
|
|
47 | (3) |
|
6 Our Maximum Likelihood Approach |
|
|
50 | (7) |
|
6.1 Scale Parameter Estimation in a Cauchy Distribution |
|
|
54 | (3) |
|
|
57 | (2) |
|
|
59 | (2) |
3. COLOR BASED RETRIEVAL |
|
61 | (22) |
|
|
61 | (3) |
|
|
64 | (1) |
|
|
64 | (4) |
|
|
65 | (1) |
|
|
66 | (1) |
|
3.3 l1 l2 l3 Color System |
|
|
67 | (1) |
|
|
68 | (5) |
|
|
69 | (4) |
|
5 Experiments with the Corel Database |
|
|
73 | (6) |
|
|
73 | (1) |
|
|
74 | (1) |
|
5.3 Printer-Scanner Noise Experiments |
|
|
75 | (1) |
|
|
76 | (1) |
|
|
76 | (1) |
|
5.6 Distribution Analysis |
|
|
77 | (2) |
|
6 Experiments with the Objects Database |
|
|
79 | (2) |
|
|
81 | (2) |
4. ROBUST TEXTURE ANALYSIS |
|
83 | (28) |
|
|
83 | (3) |
|
2 Human Perception of Texture |
|
|
86 | (1) |
|
|
87 | (8) |
|
3.1 Texture Distribution Models |
|
|
88 | (4) |
|
3.1.1 Gray-level differences |
|
|
89 | (1) |
|
3.1.2 Laws' texture energy measures |
|
|
89 | (1) |
|
3.1.3 Center-symmetric covariance measures |
|
|
89 | (2) |
|
3.1.4 Local binary patterns and trigrams |
|
|
91 | (1) |
|
3.1.5 Complementary feature pairs |
|
|
91 | (1) |
|
3.2 Gabor and Wavelet Models |
|
|
92 | (3) |
|
4 Texture Classification Experiments |
|
|
95 | (9) |
|
4.2 Distribution Analysis |
|
|
97 | (2) |
|
|
99 | (5) |
|
|
104 | (1) |
|
5 Texture Retrieval Experiments |
|
|
104 | (5) |
|
|
105 | (1) |
|
|
106 | (1) |
|
5.3 Similarity Noise for QMF-Wavelet Transform |
|
|
106 | (2) |
|
5.4 Similarity Noise for Gabor Wavelet Transform |
|
|
108 | (1) |
|
|
109 | (2) |
5. SHAPE BASED RETRIEVAL |
|
111 | (24) |
|
|
111 | (2) |
|
2 Human Perception of Visual Form |
|
|
113 | (5) |
|
|
118 | (12) |
|
3.1 Behavior of Traditional Active Contours |
|
|
120 | (4) |
|
3.2 Generalized Force Balance Equations |
|
|
124 | (1) |
|
|
125 | (5) |
|
|
130 | (1) |
|
|
131 | (3) |
|
|
134 | (1) |
6. ROBUST STEREO MATCHING AND MOTION TRACKING |
|
135 | (28) |
|
|
135 | (3) |
|
|
137 | (1) |
|
|
138 | (6) |
|
|
142 | (2) |
|
3 Stereo Matching Algorithms |
|
|
144 | (6) |
|
3.1 Template Based Algorithm |
|
|
144 | (2) |
|
3.2 Multiple Windows Algorithm |
|
|
146 | (1) |
|
3.3 Cox' Maximum Likelihood Algorithm |
|
|
147 | (3) |
|
4 Stereo Matching Experiments |
|
|
150 | (7) |
|
|
151 | (1) |
|
4.2 Stereo Matching Results |
|
|
151 | (6) |
|
|
157 | (1) |
|
5 Motion Tracking Experiments |
|
|
157 | (3) |
|
|
160 | (3) |
7. FACIAL EXPRESSION RECOGNITION |
|
163 | (36) |
|
|
164 | (2) |
|
|
166 | (5) |
|
|
167 | (1) |
|
2.2 Review of Facial Expression Recognition |
|
|
167 | (4) |
|
3 Face Tracking and Feature Extraction |
|
|
171 | (2) |
|
4 The static Approach: Bayesian Network Classifiers |
|
|
173 | (6) |
|
4.1 Continuous Naive-Bayes: Gaussian and Cauchy Naive Bayes Classifiers |
|
|
175 | (1) |
|
4.2 Beyond the Naive-Bayes Assumption: Finding Dependencies among Features Using a Gaussian TAN Classifier |
|
|
176 | (3) |
|
5 The Dynamic Approach: Expression Recognition Using Multi-level HMMs |
|
|
179 | (8) |
|
|
182 | (1) |
|
5.2 Expression Recognition Using Emotion-Specific HMMs |
|
|
183 | (1) |
|
5.3 Automatic Segmentation and Recognition of Emotions Using Multi-level HMMs |
|
|
184 | (3) |
|
|
187 | (8) |
|
6.1 Results Using the Chen Database |
|
|
191 | (3) |
|
6.1.1 Person-Dependent Tests |
|
|
191 | (2) |
|
6.1.2 Person-Independent Tests |
|
|
193 | (1) |
|
6.2 Results Using the Cohn-Kanade Database |
|
|
194 | (1) |
|
|
195 | (4) |
References |
|
199 | (11) |
Index |
|
210 | |