Muutke küpsiste eelistusi

E-raamat: Robust Control Design for Active Driver Assistance Systems: A Linear-Parameter-Varying Approach

  • Formaat: EPUB+DRM
  • Sari: Advances in Industrial Control
  • Ilmumisaeg: 18-Nov-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319461267
  • Formaat - EPUB+DRM
  • Hind: 122,88 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Advances in Industrial Control
  • Ilmumisaeg: 18-Nov-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319461267

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This monograph focuses on control methods that influence vehicle dynamics to assist the driver in enhancing passenger comfort, road holding, efficiency and safety of transport, etc., while maintaining the drivers ability to override that assistance. On individual-vehicle-component level the control problem is formulated and solved by a unified modelling and design method provided by the linear parameter varying (LPV) framework. The global behaviour desired is achieved by a judicious interplay between the individual components, guaranteed by an integrated control mechanism. The integrated control problem is also formalized and solved in the LPV framework. Most important among the ideas expounded in the book are:









application of the LPV paradigm in the modelling and control design methodology;

application of the robust LPV design as a unified framework for setting control tasks related to active driver assistance;

formulation and solution proposals for the integrated vehicle control problem;

proposal for a reconfigurable and fault-tolerant control architecture;

formulation and solution proposals for the plug-and-play concept;

detailed case studies.







Robust Control Design for Active Vehicle Assistance Systems will be of interest to academic researchers and graduate students interested in automotive control and to control and mechanical engineers working in the automotive industry.

Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
1 Introduction
1(10)
Part I Modeling and Control of LPV Systems
2 Modeling of LPV Systems
11(60)
2.1 LPV Model Structures
13(2)
2.2 Linearization Through LPV Modeling
15(10)
2.2.1 Jacobian Linearization
16(2)
2.2.2 Off-Equilibrium Linearization
18(1)
2.2.3 Fuzzy Linearization
19(1)
2.2.4 qLPV Linearization
19(2)
2.2.5 Non-uniqueness of the LPV Models
21(4)
2.3 Linearization by LFT Techniques
25(2)
2.4 Performance-Driven LPV Modeling
27(5)
2.5 LPV Modeling of Two Subsystems
32(14)
2.5.1 Modeling of the Vertical Dynamics
32(4)
2.5.2 Nonlinear Components of the Vertical Dynamics
36(5)
2.5.3 LPV Modeling of the Yaw--Roll Dynamics
41(5)
2.6 Grey-Box Identification and Parameter Estimation
46(4)
2.6.1 Observer-Based Identification
48(1)
2.6.2 Adaptive Observer-Based Approach
49(1)
2.7 Parameter Estimation: Case Studies
50(21)
2.7.1 Identification of a Suspension System
50(5)
2.7.2 Identification of the Yaw--Roll System
55(10)
2.7.3 Fault Estimation in LPV Systems
65(6)
3 Robust Control of LPV Systems
71(24)
3.1 The Modeling of Performances
71(4)
3.2 The Modeling of Uncertain Components
75(1)
3.3 Control Design Based on LPV Methods
76(8)
3.3.1 Formulation of a Nonlinear Controller
77(1)
3.3.2 Control Design Based on SLF Methods
78(1)
3.3.3 Polytopic Approach
78(3)
3.3.4 An LFT-Based Design
81(3)
3.4 Control Design Based on PDLF Methods
84(11)
3.4.1 The Analysis of LPV Systems
84(2)
3.4.2 The Control of LPV Systems With Induced L2-Norm Performance
86(5)
3.4.3 Inexact LPV Control Design
91(4)
Part II Vertical and Longitudinal Control
4 Suspension Systems in Vertical Dynamics
95(24)
4.1 Modeling of Performances in the Vertical Dynamics
96(3)
4.1.1 Performance Specifications
96(1)
4.1.2 Weighting Functions in the Control Design
96(3)
4.2 Modeling of Vertical Dynamics by Using Uncertainties
99(3)
4.2.1 Parameter Uncertainties
99(2)
4.2.2 Weighting Functions
101(1)
4.3 Active Suspension Design Based on H∞ Control
102(5)
4.4 Active Suspension Design Based on LPV Control
107(4)
4.5 Design of a Hierarchical Controller for an Active Suspension System
111(8)
4.5.1 Modeling of the Actuator Dynamics
112(2)
4.5.2 Tracking Control Based on Backstepping Design
114(3)
4.5.3 Simulation Examples
117(2)
5 Anti-roll Bars for Rollover Prevention
119(16)
5.1 Modelling of Performances in the Yaw--Roll Dynamics
121(6)
5.1.1 Rollover Threshold
121(2)
5.1.2 Design of Weighting Functions
123(4)
5.2 LPV Control Methods for Rollover Prevention Systems
127(3)
5.3 Design of a Fault-Tolerant Rollover Prevention System
130(5)
6 Adaptive Cruise Control in Longitudinal Dynamics
135(26)
6.1 Adaptive Cruise Control
135(2)
6.2 Model-Based Robust Control Design
137(5)
6.2.1 Modeling Longitudinal Dynamics
137(1)
6.2.2 Robust Control Strategy
138(1)
6.2.3 Modeling Actuator Dynamics
139(1)
6.2.4 Design of Feedback Controller
140(2)
6.3 Speed Design Based on Multiobjective Optimization
142(4)
6.3.1 Motivation of the Speed Design
142(1)
6.3.2 Design of Speed Profile
143(1)
6.3.3 Principles of the Optimization of the Look-Ahead Control
144(2)
6.4 Optimization of the Vehicle Cruise Control
146(6)
6.4.1 Handling the Preceding Vehicle in the Speed Design
148(1)
6.4.2 Motion of the Follower Vehicle in the Speed Design
148(3)
6.4.3 A Decision Method of the Lane Change
151(1)
6.5 Implementation of the Method in the Driving/Braking Systems
152(9)
6.5.1 SIL Implementation of the Controller
154(1)
6.5.2 Simulation Examples
155(6)
Part III Lateral and Integrated Control
7 Design of Integrated Vehicle Control
161(26)
7.1 Motivation of the Integrated Vehicle Control
161(3)
7.2 LPV-Based Concept of the Integrated Control
164(2)
7.3 Design of the Local and Reconfigurable Control Systems
166(10)
7.3.1 Design of the Brake System
168(1)
7.3.2 Design of the Steering System
169(1)
7.3.3 Design of the Suspension System
170(2)
7.3.4 Actuator Selection Procedure
172(3)
7.3.5 Fault Information in the Decentralized Control
175(1)
7.4 Control Design of Trajectory Tracking
176(11)
7.4.1 Modeling of Trajectory Tracking
176(2)
7.4.2 Weighting Functions in the Control Design
178(3)
7.4.3 Design of the Integrated Control
181(2)
7.4.4 Simulation Results
183(4)
8 Control of the Variable-Geometry Suspension
187(12)
8.1 Lateral Dynamics of the Vehicle Model
187(2)
8.2 Modeling of a Variable-Geometry Suspension System
189(4)
8.3 Robust Control of the Variable-Geometry Suspension System
193(6)
9 Control Design of In-Wheel Motors
199(14)
9.1 Design of In-Wheel Motor Vehicle Control
200(1)
9.2 High-Level Control Design of the LPV Controller
201(3)
9.3 Control Implementation
204(2)
9.4 Simulation Results
206(7)
9.4.1 In-Wheel Motor Fault
207(3)
9.4.2 Steering System Fault
210(3)
10 Driver Models in the Control Systems
213(18)
10.1 Driver Model for Control Design Purposes
215(1)
10.1.1 Control-Oriented Driver Model
215(1)
10.2 Control-Oriented Model for Lateral Dynamics
216(1)
10.3 Interconnection of the Driver-Vehicle System
217(2)
10.4 Performance Specifications of the Driver Assistance System
219(3)
10.4.1 Formulation of Performances
219(1)
10.4.2 Weighting Strategy of Performances
220(2)
10.5 Integrated Control Design of the Driver Assistance System
222(9)
10.5.1 Simulation Results
223(2)
10.5.2 Simulation Environment of the Driver Model
225(6)
Appendix A Modeling of LPV Systems 231(30)
Appendix B Robust Control of LPV Systems 261(16)
References 277(14)
Index 291
The authors have several years of experience in research and education. In addition, they have widespread contacts in the vehicle industry. They have achieved significant results in the fields of modeling, robust control, fault detection and isolation, reconfigurable control and vehicle oriented topics received special emphasis in the research. Results have been published in journal papers and conference presentations. They have worked in collaboration with a large number of academic institutes and university departments. They have also collaborated with vehicle manufacturers and their suppliers such as Audi, Bosch, Knorr-Bremse or Thyssen.