Preface |
|
xv | |
Acknowledgments |
|
xix | |
Introduction |
|
xxi | |
About the Companion Website |
|
xxix | |
|
Part I Control Design Using Youla Parameterization: Single Input Single Output (SISO) |
|
|
1 | (204) |
|
1 Review of the Laplace Transform |
|
|
3 | (22) |
|
1.1 The Laplace Transform Concept |
|
|
3 | (1) |
|
1.2 Singularity Functions |
|
|
3 | (4) |
|
1.2.1 Definition of the Impulse Function |
|
|
4 | (1) |
|
1.2.2 The Impulse Function and the Riemann Integral |
|
|
5 | (1) |
|
1.2.3 The General Definition of Singularity Functions |
|
|
5 | (1) |
|
1.2.3.1 "Graphs" of Some Singularity Functions |
|
|
5 | (2) |
|
1.3 The Laplace Transform |
|
|
7 | (6) |
|
1.3.1 Definition of the Laplace Transform |
|
|
7 | (1) |
|
1.3.2 Laplace Transform Properties |
|
|
8 | (1) |
|
1.3.3 Shifting the Laplace Transform |
|
|
8 | (2) |
|
1.3.4 Laplace Transform Derivatives |
|
|
10 | (2) |
|
1.3.5 Transforms of Singularity Functions |
|
|
12 | (1) |
|
1.4 Inverse Laplace Transform |
|
|
13 | (3) |
|
1.4.1 Inverse Laplace Transformation by Heaviside Expansion |
|
|
13 | (1) |
|
|
13 | (1) |
|
1.4.1.2 Distinct Poles with G(s) Being Proper |
|
|
13 | (1) |
|
|
14 | (2) |
|
1.5 The Transfer Function and the State Space Representations (State Equations) |
|
|
16 | (5) |
|
1.5.1 The Transfer Function |
|
|
16 | (1) |
|
1.5.2 The State Equations |
|
|
16 | (1) |
|
1.5.3 Transfer Function Properties |
|
|
17 | (1) |
|
1.5.4 Poles and Zeros of a Transfer Function |
|
|
18 | (1) |
|
1.5.5 Physical Readability |
|
|
19 | (2) |
|
|
21 | (4) |
|
2 The Response of Linear, Time-Invariant Dynamic Systems |
|
|
25 | (36) |
|
2.1 The Time Response of Dynamic Systems |
|
|
25 | (18) |
|
2.1.1 Final Value Theorem |
|
|
25 | (1) |
|
2.1.2 Initial Value Theorem |
|
|
26 | (1) |
|
2.1.3 Convolution and the Laplace Transform |
|
|
27 | (2) |
|
2.1.4 Transmission Blocking Response |
|
|
29 | (2) |
|
|
31 | (4) |
|
2.1.6 Initial Values and Reverse Action |
|
|
35 | (1) |
|
2.1.7 Final Values and Static Gain |
|
|
36 | (2) |
|
2.1.8 Time Response Metrics |
|
|
38 | (1) |
|
2.1.8.1 First-Order System (Single-Pole Response) |
|
|
38 | (1) |
|
2.1.8.2 Second-Order System (Quadratic Factor) |
|
|
39 | (2) |
|
2.1.9 The Effect of Zeros on Transient Response |
|
|
41 | (1) |
|
2.1.10 The Butterworth Pattern |
|
|
42 | (1) |
|
2.2 Frequency Response of Dynamic Systems |
|
|
43 | (12) |
|
2.2.1 Steady-State Frequency Response of LTI systems |
|
|
43 | (2) |
|
2.2.2 Frequency Response Representation |
|
|
45 | (1) |
|
2.2.3 Frequency Response: The Real Pole |
|
|
45 | (2) |
|
2.2.4 Frequency Response: The Real Zero |
|
|
47 | (2) |
|
2.2.5 Frequency Response: The Quadratic Factor |
|
|
49 | (1) |
|
2.2.6 Frequency Response: Pure Time Delay |
|
|
50 | (3) |
|
2.2.7 Frequency Response: Static Gain |
|
|
53 | (1) |
|
2.2.8 Frequency Response: The Composite Transfer Function |
|
|
53 | (1) |
|
2.2.9 Frequency Response: Asymptote Formulas |
|
|
54 | (1) |
|
2.2.10 Physical Readability |
|
|
54 | (1) |
|
2.2.11 Non-minimum Phase, All-Pass, and Blaschke Factors |
|
|
55 | (1) |
|
2.3 Frequency Response Plotting |
|
|
55 | (2) |
|
2.3.1 Matlab Codes for Plotting System Frequency Response |
|
|
56 | (1) |
|
|
56 | (1) |
|
2.3.1.2 Polar Plot/Nyquist Diagram |
|
|
56 | (1) |
|
|
57 | (4) |
|
|
61 | (34) |
|
3.1 The Value of Feedback Control |
|
|
62 | (2) |
|
3.1.1 The Advantages of the Closed Loop |
|
|
63 | (1) |
|
3.2 Closed-Loop Transfer Functions |
|
|
64 | (6) |
|
|
65 | (1) |
|
3.2.2 Closed-Loop Transfer Functions and the Return Difference |
|
|
65 | (1) |
|
3.2.3 Sensitivity, Complementary Sensitivity, and the Youla Parameter |
|
|
66 | (4) |
|
3.3 Well-Posedness and Internal Stability |
|
|
70 | (6) |
|
|
70 | (1) |
|
3.3.2 The Internal Stability of Feedback Control |
|
|
71 | (1) |
|
3.3.2.1 The Closed-Loop Characteristic Equation and Closed-Loop Poles |
|
|
72 | (1) |
|
3.3.2.2 Closed-Loop Zeros |
|
|
72 | (1) |
|
3.3.2.3 Pole-Zero Cancellation and The Internal Stability of Feedback Control |
|
|
73 | (3) |
|
3.4 The Youla Parameterization of all Internally Stabilizing Compensators |
|
|
76 | (4) |
|
3.5 Interpolation Conditions |
|
|
80 | (3) |
|
|
83 | (1) |
|
3.7 Feedback Design, and Frequency Methods: Input Attenuation and Robustness |
|
|
83 | (7) |
|
3.7.1 The Frequency Paradigm |
|
|
84 | (1) |
|
3.7.2 Input Attenuation and Command Following |
|
|
84 | (1) |
|
3.7.3 Bode Measures of Performance Robustness |
|
|
85 | (3) |
|
3.7.4 Graphical Interpretation of Return, Sensitivity, and Complementary Sensitivity |
|
|
88 | (1) |
|
3.7.5 Weighting Factors and Performance Robustness |
|
|
89 | (1) |
|
3.8 The Saturation Constraints |
|
|
90 | (3) |
|
3.8.1 Bandwidth and Response Time |
|
|
90 | (1) |
|
3.8.2 The Youla Parameter and Saturation |
|
|
91 | (2) |
|
|
93 | (2) |
|
4 Feedback Design For SISO: Shaping and Parameterization |
|
|
95 | (34) |
|
4.1 Closed-Loop Stability Under Uncertain Conditions |
|
|
95 | (8) |
|
4.1.1 Harmonic Consistency |
|
|
95 | (1) |
|
4.1.2 Nyquist Stability Criterion: Heuristic Justification |
|
|
96 | (2) |
|
4.1.3 Stability Margins and Stability Robustness |
|
|
98 | (1) |
|
4.1.4 Margins, T(jω) and S(jω), and Hx Norms (Relationships Between Classical and Neoclassical Approaches) |
|
|
99 | (2) |
|
4.1.4.1 Neoclassical Approach |
|
|
101 | (2) |
|
4.2 Mathematical Design Constraints |
|
|
103 | (1) |
|
4.2.1 Sensitivity/Complementary Sensitivity Point-wise Constraints |
|
|
103 | (1) |
|
4.2.2 Sensitivity, Complementary Sensitivity, and Analytic Constraints |
|
|
104 | (1) |
|
4.2.2.1 Non-minimum Phase Constraints on Design |
|
|
104 | (1) |
|
4.3 The Neoclassical Approach to Internal Stability |
|
|
104 | (2) |
|
4.4 Feedback Design And Parameterization: Stable Objects |
|
|
106 | (4) |
|
4.4.1 Renormalization of Gains |
|
|
108 | (1) |
|
4.4.2 Shaping of the Closed-Loop: Stable SISO |
|
|
108 | (1) |
|
4.4.3 Neoclassical Design Principles |
|
|
109 | (1) |
|
4.5 Loop Shaping Using Youla Parameterization |
|
|
110 | (6) |
|
|
111 | (1) |
|
4.5.2 Non-minimum Phase Zeros |
|
|
112 | (2) |
|
|
114 | (1) |
|
|
115 | (1) |
|
|
116 | (1) |
|
|
117 | (8) |
|
|
125 | (4) |
|
5 Norms of Feedback Systems |
|
|
129 | (20) |
|
5.1 The Laplace and Fourier Transform |
|
|
129 | (5) |
|
5.1.1 The Inverse Laplace Transform |
|
|
129 | (2) |
|
|
131 | (1) |
|
5.1.3 The Fourier Transform |
|
|
132 | (1) |
|
5.1.3.1 Properties of the Fourier Transform |
|
|
133 | (1) |
|
5.1.3.2 Inverse Fourier Transformation By Heaviside Expansion |
|
|
133 | (1) |
|
5.2 Norms of Signals and Systems |
|
|
134 | (6) |
|
|
134 | (1) |
|
|
135 | (1) |
|
5.2.1.2 Properties of Norms |
|
|
136 | (1) |
|
5.2.2 Norms of Dynamic Systems |
|
|
137 | (1) |
|
|
138 | (1) |
|
5.2.3.1 Transient Inputs (Energy Bounded) |
|
|
138 | (1) |
|
5.2.3.2 Persistent Inputs (Energy Unbounded) |
|
|
139 | (1) |
|
5.3 Quantifying Uncertainty |
|
|
140 | (7) |
|
5.3.1 The Characterization of Uncertainty in Models |
|
|
140 | (1) |
|
5.3.2 Weighting Factors and Stability Robustness |
|
|
141 | (1) |
|
5.3.3 Robust Stability (Complementary Sensitivity) and Uncertainty |
|
|
142 | (3) |
|
5.3.4 Sensitivity and Performance" |
|
|
145 | (1) |
|
5.3.5 Performance and Stability |
|
|
146 | (1) |
|
|
147 | (2) |
|
6 Feedback Design By the Optimization of Closed-Loop Norms |
|
|
149 | (24) |
|
|
149 | (2) |
|
6.1.1 Frequency Domain Control Design Approaches |
|
|
150 | (1) |
|
6.2 Optimization Design Objectives and Constraints |
|
|
151 | (3) |
|
6.2.1 Algebraic Constraints |
|
|
151 | (1) |
|
6.2.2 Analytic Constraints |
|
|
152 | (1) |
|
6.2.2.1 Nonminimum Phase Effect |
|
|
152 | (1) |
|
6.2.2.2 Bode Sensitivity Integral Theorem |
|
|
153 | (1) |
|
6.3 The Linear Fractional Transformation |
|
|
154 | (2) |
|
6.4 Setup for Loop-Shaping Optimization |
|
|
156 | (4) |
|
6.4.1 Setup for Youla Parameter Loop Shaping |
|
|
158 | (2) |
|
6.5 H∞-norm Optimization Problem |
|
|
160 | (3) |
|
6.5.1 Solution to a Simple Optimization Problem |
|
|
161 | (2) |
|
|
163 | (1) |
|
6.7 H∞ Solutions Using Matlab Robust Control Toolbox for SISO Systems |
|
|
164 | (4) |
|
6.7.1 Defining Frequency Weights |
|
|
164 | (4) |
|
|
168 | (5) |
|
7 Estimation Design for SISO Using Parameterization Approach |
|
|
173 | (10) |
|
|
173 | (2) |
|
7.2 Youla Controller Output Observer Concept |
|
|
175 | (2) |
|
|
177 | (5) |
|
7.3.1 Output and Feedthrough Matrices |
|
|
178 | (1) |
|
7.3.2 SISO Estimator Design |
|
|
178 | (4) |
|
|
182 | (1) |
|
|
183 | (22) |
|
8.1 Yaw Stability Control with Active Limited Slip Differential |
|
|
183 | (12) |
|
8.1.1 Model and Control Design |
|
|
183 | (4) |
|
8.1.2 Youla Control Design Using Hand Computation |
|
|
187 | (1) |
|
8.1.3 H∞ Control Design Using Loop-shaping Technique |
|
|
188 | (7) |
|
8.2 Vehicle Yaw Rate and Side-Slip Estimation |
|
|
195 | (10) |
|
|
195 | (1) |
|
8.2.2 Vehicle Model - Nonlinear Bicycle Model with Pacejka Tire Model |
|
|
196 | (1) |
|
8.2.3 Linearizing the Bicycle Model |
|
|
197 | (1) |
|
|
197 | (1) |
|
|
198 | (1) |
|
8.2.6 Youla Parameterization Estimator Design |
|
|
198 | (2) |
|
|
200 | (1) |
|
|
201 | (1) |
|
8.2.8.1 Vehicle Mass Variation |
|
|
201 | (2) |
|
8.2.8.2 Tire-road Coefficient of Friction |
|
|
203 | (2) |
|
Part II Control Design Using Youla Parametrization: Multi Input Multi Output (MIMO) |
|
|
205 | (182) |
|
9 Introduction to Multivariate Feedback Control |
|
|
207 | (10) |
|
9.1 Nonoptimal, Optimal, and Robust Control |
|
|
207 | (3) |
|
9.1.1 Nonoptimal Control Methods |
|
|
208 | (1) |
|
9.1.2 Optimal Control Methods |
|
|
208 | (1) |
|
9.1.3 Optimal Robust Control |
|
|
209 | (1) |
|
9.2 Review of the SISO Transfer Function |
|
|
210 | (5) |
|
|
210 | (1) |
|
9.2.2 Interpretation of Poles and Zeros of a Transfer Function |
|
|
211 | (1) |
|
|
211 | (1) |
|
|
212 | (1) |
|
9.2.2.3 Transmission Blocking Zeros |
|
|
213 | (2) |
|
9.3 Basic Aspects of Transfer Function Matrices |
|
|
215 | (1) |
|
|
215 | (2) |
|
10 Matrix Fractional Description |
|
|
217 | (30) |
|
10.1 Transfer Function Matrices |
|
|
217 | (2) |
|
10.1.1 Matrix Fraction Description |
|
|
218 | (1) |
|
10.2 Polynomial Matrix Properties |
|
|
219 | (2) |
|
10.2.1 Minimum-Degree Factorization |
|
|
220 | (1) |
|
10.3 Equivalency of Polynomial Matrices |
|
|
221 | (1) |
|
10.4 Smith Canonical Form |
|
|
222 | (3) |
|
|
225 | (9) |
|
10.5.1 Smith-McMillan Form |
|
|
225 | (3) |
|
10.5.2 MFD's and Their Relations to Smith-McMillan Form |
|
|
228 | (1) |
|
10.5.3 Computing an Irreducible (Coprime) Matrix Fraction Description |
|
|
229 | (5) |
|
10.6 MIMO Controllability and Observability |
|
|
234 | (9) |
|
10.6.1 State-Space Realization |
|
|
235 | (1) |
|
|
235 | (1) |
|
|
236 | (2) |
|
10.6.2 Controllable Form of State-Space Realization of MIMO System |
|
|
238 | (1) |
|
10.6.2.1 Mathematical Details |
|
|
239 | (4) |
|
10.7 Straightforward Computational Procedures |
|
|
243 | (2) |
|
|
245 | (2) |
|
11 Eigenvalues and Singular Values |
|
|
247 | (20) |
|
11.1 Eigenvalues and Eigenvectors |
|
|
247 | (1) |
|
11.2 Matrix Diagonalization |
|
|
248 | (5) |
|
11.2.1 Classes of Diagonalizable Matrices |
|
|
250 | (3) |
|
11.3 Singular Value Decomposition |
|
|
253 | (4) |
|
11.3.1 What is a Singular Value Decomposition? |
|
|
254 | (1) |
|
11.3.2 Orthonormal Vectors |
|
|
255 | (2) |
|
11.4 Singular Value Decomposition Properties |
|
|
257 | (1) |
|
11.5 Comparison of Eigenvalue and Singular Value Decompositions |
|
|
258 | (4) |
|
|
259 | (3) |
|
11.6 Generalized Singular Value Decomposition |
|
|
262 | (3) |
|
|
264 | (1) |
|
11.6.2 Input and Output Spaces |
|
|
264 | (1) |
|
|
265 | (1) |
|
|
265 | (1) |
|
|
266 | (1) |
|
12 MIMO Feedback Principals |
|
|
267 | (18) |
|
12.1 Mutlivariable Closed-Loop Transfer Functions |
|
|
267 | (3) |
|
12.1.1 Transfer Function Matrix, From r to y |
|
|
265 | (3) |
|
12.1.2 Transfer Function Matrix From dy to y As Shown in Figure 12.1 |
|
|
268 | (1) |
|
12.1.3 Transfer Function Matrix From r to e |
|
|
269 | (1) |
|
12.1.4 Transfer Function From r to u |
|
|
269 | (1) |
|
12.1.5 Realization Tricks |
|
|
270 | (1) |
|
12.2 Well-Posedness of MIMO Systems |
|
|
270 | (1) |
|
12.3 State Variable Compositions |
|
|
271 | (2) |
|
12.4 Nyquist Criterion for MIMO Systems |
|
|
273 | (3) |
|
12.4.1 Characteristic Gains |
|
|
273 | (1) |
|
|
274 | (1) |
|
12.4.3 Internal Stability |
|
|
275 | (1) |
|
12.5 MIMO Performance and Robustness Criteria |
|
|
276 | (2) |
|
12.6 Open-Loop Singular Values |
|
|
278 | (3) |
|
12.6.1 Crossover Frequency |
|
|
279 | (1) |
|
12.6.2 Bandwidth Constraints |
|
|
280 | (1) |
|
12.7 Condition Number and its Role in MIMO Control Design |
|
|
281 | (1) |
|
12.7.1 Condition Numbers and Decoupling |
|
|
281 | (1) |
|
12.7.2 Role of Tu and Su in MIMO Feedback Design |
|
|
282 | (1) |
|
12.8 Summary of Requirements |
|
|
282 | (1) |
|
12.8.1 Closed-Loop Requirements |
|
|
282 | (1) |
|
12.8.2 Open-Loop Requirements |
|
|
283 | (1) |
|
|
283 | (2) |
|
13 Youla Parameterization for Feedback Systems |
|
|
285 | (18) |
|
13.1 Neoclassical Control for MIMO Systems |
|
|
285 | (1) |
|
13.1.1 Internal Model Control |
|
|
285 | (1) |
|
13.2 MIMO Feedback Control Design for Stable Plants |
|
|
286 | (1) |
|
13.2.1 Procedure to Find the MIMO Controller, Gc |
|
|
287 | (1) |
|
13.2.2 Interpolation Conditions |
|
|
287 | (1) |
|
13.3 MIMO Feedback Control Design Examples |
|
|
287 | (7) |
|
13.3.1 Summary of Closed-Loop Requirements |
|
|
290 | (1) |
|
13.3.2 Summary of Open-Loop Requirements |
|
|
290 | (4) |
|
13.4 MIMO Feedback Control Design: Unstable Plants |
|
|
294 | (7) |
|
13.4.1 The Proposed Control Design Method |
|
|
294 | (6) |
|
13.4.2 Another Approach for MIMO Controller Design |
|
|
300 | (1) |
|
|
301 | (2) |
|
14 Norms of Feedback Systems |
|
|
303 | (16) |
|
|
303 | (4) |
|
14.1.1 Signal Norms, the Discrete Case |
|
|
303 | (1) |
|
|
304 | (1) |
|
|
305 | (1) |
|
|
306 | (1) |
|
14.2 Linear Fractional Transformations (LFT) |
|
|
307 | (2) |
|
14.3 Linear Fractional Transformation Explained |
|
|
309 | (3) |
|
14.3.1 LFTs in Control Design |
|
|
310 | (2) |
|
14.4 Modeling Uncertainties |
|
|
312 | (11) |
|
|
312 | (1) |
|
14.4.2 Descriptions of Unstructured Uncertainty |
|
|
312 | (11) |
|
14.5 General Robust Stability Theorem |
|
|
323 | (3) |
|
14.5.1 SVD Properties Applied |
|
|
314 | (1) |
|
14.5.2 Robust Performance |
|
|
315 | (1) |
|
|
316 | (3) |
|
15 Optimal Control in MIMO Systems |
|
|
319 | (1) |
|
15.1 Output Feedback Control |
|
|
319 | (1) |
|
|
320 | (2) |
|
|
322 | (1) |
|
|
323 | (1) |
|
15.1.3.1 Kalman Filter Dynamic Model |
|
|
324 | (1) |
|
|
325 | (1) |
|
|
325 | (5) |
|
15.2.1 State Feedback (Full Information) H∞ Control Design |
|
|
327 | (2) |
|
|
329 | (1) |
|
15.3 H∞ Robust Optimal Control |
|
|
330 | (2) |
|
|
332 | (3) |
|
16 Estimation Design for MIMO Using Parameterization Approach |
|
|
335 | (10) |
|
16.1 YCOO Concept for MIMO |
|
|
335 | (2) |
|
16.2 MIMO Estimator Design |
|
|
337 | (1) |
|
|
338 | (1) |
|
16.3.1 First Decoupled System (Gsm1) |
|
|
338 | (1) |
|
16.3.2 Second Decoupled System (Gsm2) |
|
|
338 | (1) |
|
|
339 | (1) |
|
|
339 | (5) |
|
16.4.1 States Estimation: Four States |
|
|
340 | (1) |
|
16.4.2 Input Estimation: Skyhook Based Control |
|
|
341 | (1) |
|
16.4.3 Input Estimation: Road Roughness |
|
|
342 | (2) |
|
|
344 | (1) |
|
17 Practical Applications |
|
|
345 | (42) |
|
|
345 | (11) |
|
17.1.1 Model and Control Design |
|
|
345 | (3) |
|
17.1.2 MIMO Youla Control Design |
|
|
348 | (2) |
|
17.1.3 H∞ Control Design Technique |
|
|
350 | (1) |
|
17.1.4 Uncertain Actuator Model |
|
|
351 | (1) |
|
|
351 | (3) |
|
17.1.6 Simulation Results |
|
|
354 | (2) |
|
17.1.7 Robustness Test: Actuator Model Variations |
|
|
356 | (1) |
|
17.2 Advanced Engine Speed Control for Hybrid Vehicles |
|
|
356 | (8) |
|
17.2.1 Diesel Hybrid Electric Vehicle Model |
|
|
357 | (2) |
|
17.2.2 MISO Youla Control Design |
|
|
359 | (1) |
|
17.2.3 First Youla Method |
|
|
359 | (1) |
|
17.2.4 Second Youla Method |
|
|
360 | (1) |
|
|
360 | (2) |
|
17.2.6 Simulation Results |
|
|
362 | (1) |
|
|
363 | (1) |
|
17.3 Robust Control for the Powered Descent of a Multibody Lunar Landing System |
|
|
364 | (10) |
|
17.3.1 Multibody Dynamics Model |
|
|
365 | (1) |
|
17.3.2 Trajectory Optimization |
|
|
366 | (1) |
|
17.3.3 MIMO Youla Control Design |
|
|
367 | (4) |
|
17.3.4 Youla Method for Under-Actuated Systems |
|
|
371 | (3) |
|
17.4 Vehicle Yaw Rate and Sideslip Estimation |
|
|
374 | (13) |
|
|
375 | (1) |
|
|
376 | (1) |
|
17.4.2.1 Nonlinear Bicycle Model With Pacejka Tire Model |
|
|
376 | (1) |
|
17.4.2.2 Kinematic Relationship |
|
|
376 | (1) |
|
17.4.2.3 Multi-Input Model |
|
|
377 | (1) |
|
17.4.2.4 Linearizing the Bicycle Model for SISO and MIMO Cases |
|
|
378 | (1) |
|
|
378 | (1) |
|
17.4.3.1 Youla Parameterization Control Design |
|
|
378 | (1) |
|
17.4.4 Simulation and Estimation Result |
|
|
379 | (3) |
|
|
382 | (1) |
|
17.4.5.1 Vehicle mass variation |
|
|
382 | (1) |
|
17.4.5.2 Tire-road coefficient of friction |
|
|
382 | (1) |
|
|
382 | (4) |
|
|
386 | (1) |
|
|
387 | (16) |
|
|
387 | (1) |
|
|
388 | (1) |
|
A.3 Complex Analysis Definitions |
|
|
389 | (1) |
|
A.4 Cauchy-Riemann Conditions |
|
|
390 | (2) |
|
A.5 Cauchy Integral Theorem |
|
|
392 | (2) |
|
|
394 | (1) |
|
A.6 Maximum Modulus Theorem |
|
|
394 | (2) |
|
A.7 Poisson Integral Formula |
|
|
396 | (2) |
|
A.8 Cauchy's Argument Principle |
|
|
398 | (2) |
|
A.9 Nyquist Stability Criterion |
|
|
400 | (3) |
|
B Singular Value Properties |
|
|
403 | (4) |
|
|
403 | (1) |
|
B.2 Proof of Bounded Eigenvalues |
|
|
404 | (1) |
|
B.3 Proof of Matrix Inequality |
|
|
404 | (2) |
|
|
405 | (1) |
|
|
405 | (1) |
|
B.3.3 Combined Inequality |
|
|
406 | (1) |
|
|
406 | (1) |
|
|
406 | (1) |
|
|
406 | (1) |
|
B.4.3 Combined Inequality |
|
|
406 | (1) |
|
|
407 | (10) |
|
|
407 | (1) |
|
C.2 Information as a Precise Measure of Bandwidth |
|
|
408 | (2) |
|
C.2.1 Neoclassical Feedback Control |
|
|
408 | (1) |
|
C.2.2 Defining a Measure to Characterize the Usefulness of Feedback |
|
|
408 | (1) |
|
C.2.3 Computation of New Bandwidth |
|
|
409 | (1) |
|
|
410 | (4) |
|
|
414 | (3) |
|
|
417 | (8) |
|
|
417 | (2) |
|
|
419 | (1) |
|
|
420 | (2) |
|
|
422 | (3) |
References |
|
425 | (2) |
Index |
|
427 | |