Preface |
|
xxi | |
Acknowledgments |
|
xxv | |
About the Authors |
|
xxvii | |
|
1 Introduction to Robust Optimization |
|
|
1 | (16) |
|
1.1 What Is Quality as Loss? |
|
|
2 | (2) |
|
|
4 | (1) |
|
1.3 What Is Robust Assessment? |
|
|
5 | (1) |
|
1.4 What Is Robust Optimization? |
|
|
5 | (12) |
|
|
8 | (1) |
|
|
9 | (4) |
|
|
13 | (4) |
|
2 Eight Steps for Robust Optimization and Robust Assessment |
|
|
17 | (40) |
|
2.1 Before Eight Steps: Select Project Area |
|
|
18 | (1) |
|
2.2 Eight Steps for Robust Optimization |
|
|
19 | (33) |
|
2.2.1 Step 1: Define Scope for Robust Optimization |
|
|
19 | (1) |
|
2.2.2 Step 2: Identify Ideal Function/Response |
|
|
20 | (3) |
|
2.2.2.1 Ideal Function: Dynamic Response |
|
|
20 | (1) |
|
2.2.2.2 Nondynamic Responses |
|
|
21 | (2) |
|
2.2.3 Step 3: Develop Signal and Noise Strategies |
|
|
23 | (9) |
|
2.2.3.1 How Input M is Varied to Benchmark "Robustness" |
|
|
23 | (1) |
|
2.2.3.2 How Noise Factors Are Varied to Benchmark "Robustness" |
|
|
23 | (9) |
|
2.2.4 Step 4: Select Control Factors and Levels |
|
|
32 | (6) |
|
2.2.4.1 Traditional Approach to Explore Control Factors |
|
|
32 | (1) |
|
2.2.4.2 Exploration of Design Space by Orthogonal Array |
|
|
33 | (1) |
|
2.2.4.3 Try to Avoid Strong Interactions between Control Factors |
|
|
33 | (3) |
|
2.2.4.4 Orthogonal Array and its Mechanics |
|
|
36 | (2) |
|
2.2.5 Step 5: Execute and Collect Data |
|
|
38 | (1) |
|
2.2.6 Step 6: Conduct Data Analysis |
|
|
38 | (11) |
|
2.2.6.1 Computations of S/N and β |
|
|
39 | (4) |
|
2.2.6.2 Computation of S/N and β for L18 Data Sets |
|
|
43 | (1) |
|
2.2.6.3 Response Table for S/N and β |
|
|
43 | (5) |
|
2.2.6.4 Determination of Optimum Design |
|
|
48 | (1) |
|
2.2.7 Step 7: Predict and Confirm |
|
|
49 | (1) |
|
|
50 | (1) |
|
2.2.8 Step 8: Lesson Learned and Action Plan |
|
|
50 | (2) |
|
2.3 Eight Steps for Robust Assessment |
|
|
52 | (3) |
|
2.3.1 Step 1: Define Scope |
|
|
52 | (1) |
|
2.3.2 Step 2: Identify Ideal Function/Response and Step 3: Develop Signal and Noise Strategies |
|
|
52 | (1) |
|
2.3.3 Step 4: Select Designs for Assessment |
|
|
52 | (1) |
|
2.3.4 Step 5: Execute and Collect Data |
|
|
52 | (1) |
|
2.3.5 Step 6: Conduct Data Analysis |
|
|
52 | (1) |
|
2.3.6 Step 7: Make Judgments |
|
|
53 | (1) |
|
2.3.7 Step 8: Lesson Learned and Action Plan |
|
|
53 | (2) |
|
2.4 As You Go through Case Studies in This Book |
|
|
55 | (2) |
|
3 Implementation of Robust Optimization |
|
|
57 | (6) |
|
|
57 | (1) |
|
3.2 Robust Optimization Implementation |
|
|
57 | (8) |
|
3.2.1 Leadership Commitment |
|
|
58 | (1) |
|
3.2.2 Executive Leader and the Corporate Team |
|
|
58 | (2) |
|
3.2.3 Effective Communication |
|
|
60 | (1) |
|
3.2.4 Education and Training |
|
|
61 | (1) |
|
3.2.5 Integration Strategy |
|
|
62 | (1) |
|
3.2.6 Bottom Line Performance |
|
|
62 | (1) |
Part One Vehicle Level Optimization |
|
63 | (32) |
|
4 Optimization of Vehicle Offset Crashworthy Design Using a Simplified Analysis Model |
|
|
65 | (14) |
|
|
|
65 | (1) |
|
|
66 | (1) |
|
4.3 Stepwise Implementation of DFSS Optimization for Vehicle Offset Impact |
|
|
67 | (10) |
|
4.3.1 Step 1: Scope Defined for Optimization |
|
|
67 | (1) |
|
4.3.2 Step 2: Identify/Select Design Alternatives |
|
|
67 | (1) |
|
4.3.3 Step 3: Identify Ideal Function |
|
|
68 | (1) |
|
4.3.4 Step 4: Develop Signal and Noise Strategy |
|
|
69 | (1) |
|
4.3.4.1 Input and Output Signal Strategy |
|
|
69 | (1) |
|
4.3.5 Step 5: Select Control/Noise Factors and Levels |
|
|
70 | (1) |
|
4.3.5.1 Simplified Spring Mass Model Creation and Validation |
|
|
70 | (1) |
|
4.3.5.2 Control Variable Selection |
|
|
72 | (1) |
|
4.3.5.3 Control Factor Level Application for Spring Stiffness Updates |
|
|
73 | (1) |
|
4.3.6 Step 6: Execute and Conduct Data Analysis |
|
|
73 | (1) |
|
4.3.7 Step 7: Validation of Optimized Model |
|
|
74 | (3) |
|
|
77 | (1) |
|
|
77 | (1) |
|
|
77 | (2) |
|
5 Optimization of the Component Characteristics for Improving Collision Safety by Simulation |
|
|
79 | (16) |
|
Isuzu Advanced Engineering Center |
|
|
|
79 | (1) |
|
|
80 | (1) |
|
|
81 | (1) |
|
5.4 Concept of Standardized S/N Ratios with Respect to Survival Space |
|
|
82 | (4) |
|
5.5 Results and Consideration |
|
|
86 | (8) |
|
|
94 | (1) |
|
|
94 | (1) |
|
|
94 | (1) |
Part Two Subsystems Level Optimization By Original Equipment Manufacturers (OEMs) |
|
95 | (140) |
|
6 Optimization of Small DC Motors Using Functionality for Evaluation |
|
|
97 | (16) |
|
|
|
|
97 | (1) |
|
|
98 | (1) |
|
6.3 Functionality for Evaluation in Case of DC Motors |
|
|
98 | (1) |
|
6.4 Experiment Method and Measurement Data |
|
|
99 | (1) |
|
|
100 | (1) |
|
|
101 | (3) |
|
|
104 | (1) |
|
6.8 Selection of Optimal Design and Confirmation |
|
|
104 | (3) |
|
|
107 | (1) |
|
6.10 Consideration of Analysis for Audible Noise |
|
|
108 | (2) |
|
|
110 | (3) |
|
6.11.1 The Importance of Functionality for Evaluation |
|
|
110 | (1) |
|
6.11.2 Evaluation under the Unloaded (Idling) Condition |
|
|
110 | (1) |
|
6.11.3 Evaluation of Audible Noise (Quality Characteristic) |
|
|
111 | (1) |
|
|
111 | (2) |
|
7 Optimal Design for a Double-Lift Window Regulator System Used in Automobiles |
|
|
113 | (20) |
|
|
|
|
113 | (1) |
|
|
114 | (1) |
|
7.3 Schematic Figure of Double-Lift Window Regulator System |
|
|
114 | (1) |
|
|
114 | (2) |
|
|
116 | (1) |
|
|
117 | (2) |
|
7.7 Conventional Data Analysis and Results |
|
|
119 | (1) |
|
7.8 Selection of Optimal Condition and Confirmation Test Results |
|
|
120 | (2) |
|
7.9 Evaluation of Quality Characteristics |
|
|
122 | (2) |
|
7.10 Concept of Analysis Based on Standardized S/N Ratio |
|
|
124 | (1) |
|
7.11 Analysis Results Based on Standardized S/N Ratio |
|
|
125 | (2) |
|
7.12 Comparison between Analysis Based on Standardized S/N Ratio and Analysis Based on Conventional S/N Ratio |
|
|
127 | (5) |
|
|
132 | (1) |
|
|
132 | (1) |
|
|
132 | (1) |
|
8 Optimization of Next-Generation Steering System Using Computer Simulation |
|
|
133 | (14) |
|
|
|
133 | (1) |
|
|
134 | (1) |
|
|
134 | (1) |
|
|
135 | (1) |
|
|
136 | (1) |
|
|
136 | (1) |
|
8.6.1 Signal and Response |
|
|
136 | (1) |
|
|
136 | (1) |
|
|
137 | (1) |
|
|
137 | (1) |
|
8.7 Pre-analysis for Compounding the Noise Factors |
|
|
137 | (1) |
|
8.8 Calculation of Standardized S/N Ratio |
|
|
138 | (3) |
|
|
141 | (1) |
|
8.10 Determination of Optimal Design and Confirmation |
|
|
141 | (1) |
|
8.11 Tuning to the Targeted Value |
|
|
142 | (2) |
|
|
144 | (3) |
|
|
145 | (2) |
|
9 Future Truck Steering Effort Robustness |
|
|
147 | (26) |
|
General Motors Corporation |
|
|
|
147 | (1) |
|
|
148 | (6) |
|
|
148 | (1) |
|
9.2.2 Hydraulic Power-Steering Assist System |
|
|
149 | (3) |
|
9.2.3 Valve Assembly Design |
|
|
152 | (1) |
|
|
153 | (1) |
|
|
154 | (18) |
|
9.3.1 Ideal Steering Effort Function |
|
|
154 | (3) |
|
|
157 | (1) |
|
9.3.3 Noise Compounding Strategy and Input Signals |
|
|
157 | (2) |
|
9.3.4 Standardized S/N Post-Processing |
|
|
159 | (6) |
|
9.3.5 Quality Loss Function |
|
|
165 | (7) |
|
|
172 | (1) |
|
|
172 | (1) |
|
10 Optimal Design of Engine Mounting System Based on Quality Engineering |
|
|
173 | (14) |
|
|
|
173 | (1) |
|
|
174 | (1) |
|
|
174 | (1) |
|
10.4 Application of Standard S/N Ratio Taguchi Method |
|
|
175 | (3) |
|
10.5 Iterative Application of Standard S/N Ratio Taguchi Method |
|
|
178 | (3) |
|
10.6 Influence of Interval of Factor Level |
|
|
181 | (3) |
|
|
184 | (1) |
|
|
185 | (1) |
|
|
186 | (1) |
|
|
186 | (1) |
|
11 Optimization of a Front-Wheel-Drive Transmission for Improved Efficiency and Robustness |
|
|
187 | (22) |
|
|
|
|
187 | (1) |
|
|
188 | (1) |
|
|
189 | (1) |
|
11.3.1 Ideal Function and Measurement |
|
|
189 | (1) |
|
|
190 | (1) |
|
|
191 | (1) |
|
11.6 Control Factor Selection |
|
|
192 | (1) |
|
11.7 Orthogonal Array Selection |
|
|
193 | (3) |
|
11.8 Results and Discussion |
|
|
196 | (10) |
|
|
196 | (4) |
|
|
200 | (1) |
|
|
201 | (1) |
|
|
201 | (2) |
|
11.8.5 Verification of Results |
|
|
203 | (3) |
|
|
206 | (1) |
|
|
207 | (1) |
|
|
207 | (2) |
|
12 Fuel Delivery System Robustness |
|
|
209 | (14) |
|
|
|
209 | (1) |
|
|
210 | (1) |
|
12.2.1 Fuel System Overview |
|
|
210 | (1) |
|
12.2.2 Conventional Fuel System |
|
|
211 | (1) |
|
|
211 | (1) |
|
12.3 Experiment Description |
|
|
211 | (2) |
|
|
211 | (1) |
|
|
211 | (2) |
|
|
213 | (1) |
|
|
213 | (1) |
|
|
214 | (1) |
|
12.5 Experiment Test Results |
|
|
214 | (1) |
|
12.6 Sensitivity (β) Analysis |
|
|
214 | (3) |
|
12.7 Confirmation Test Results |
|
|
217 | (6) |
|
12.7.1 Bench Test Confirmation |
|
|
217 | (1) |
|
12.7.1.1 Initial Fuel Delivery System |
|
|
217 | (1) |
|
12.7.1.2 Optimal Fuel Delivery System |
|
|
218 | (1) |
|
12.7.2 Vehicle Verification |
|
|
218 | (1) |
|
12.7.2.1 Initial Fuel Delivery System |
|
|
219 | (1) |
|
12.7.2.2 Optimal Fuel Delivery System |
|
|
219 | (1) |
|
|
220 | (3) |
|
13 Improving Coupling Factor in Vehicle Theft Deterrent Systems Using Design for Six Sigma (DFSS) |
|
|
223 | (12) |
|
General Motors Corporation |
|
|
|
223 | (1) |
|
|
224 | (1) |
|
|
225 | (1) |
|
13.4 The Voice of the Customer |
|
|
225 | (1) |
|
13.5 Experimental Strategy |
|
|
225 | (2) |
|
|
225 | (1) |
|
|
226 | (1) |
|
|
226 | (1) |
|
|
227 | (1) |
|
|
227 | (1) |
|
13.7 The Experimental Results |
|
|
228 | (1) |
|
|
229 | (8) |
|
|
233 | (1) |
|
|
234 | (1) |
Part Three Subsystems Level Optimization By Suppliers |
|
235 | (152) |
|
14 Magnetic Sensing System Optimization |
|
|
237 | (12) |
|
|
|
237 | (2) |
|
14.1.1 The Magnetic Sensing System |
|
|
238 | (1) |
|
14.2 Improvement of Design Technique |
|
|
239 | (2) |
|
14.2.1 Traditional Design Technique |
|
|
239 | (1) |
|
14.2.2 Design Technique by Quality Engineering |
|
|
239 | (2) |
|
14.3 System Design Technique |
|
|
241 | (5) |
|
14.3.1 Parameter Design Diagram |
|
|
241 | (1) |
|
14.3.2 Signal Factor, Control Factor, and Noise Factor |
|
|
242 | (2) |
|
14.3.3 Implementation of Parameter Design |
|
|
244 | (1) |
|
14.3.4 Results of the Confirmation Experiment |
|
|
244 | (2) |
|
14.4 Effect by Shortening of Development Period |
|
|
246 | (1) |
|
|
246 | (1) |
|
|
247 | (1) |
|
|
247 | (2) |
|
15 Direct Injection Diesel Injector Optimization |
|
|
249 | (30) |
|
Delphi Automotive Systems |
|
|
|
249 | (1) |
|
|
250 | (3) |
|
|
250 | (1) |
|
|
250 | (1) |
|
15.2.3 Objectives and Approach to Optimization |
|
|
251 | (2) |
|
15.3 Simulation Model Robustness |
|
|
253 | (4) |
|
|
253 | (4) |
|
15.3.2 Approach to Optimization |
|
|
257 | (1) |
|
|
257 | (1) |
|
|
257 | (11) |
|
|
257 | (1) |
|
15.4.2 Signal and Noise Strategies |
|
|
258 | (1) |
|
|
258 | (1) |
|
|
258 | (1) |
|
15.4.3 Control Factors and Levels |
|
|
259 | (1) |
|
15.4.4 Experimental Layout |
|
|
259 | (1) |
|
15.4.5 Data Analysis and Two-Step Optimization |
|
|
259 | (4) |
|
|
263 | (1) |
|
15.4.7 Discussions on Parameter Design Results |
|
|
264 | (1) |
|
|
264 | (1) |
|
|
264 | (4) |
|
|
268 | (7) |
|
15.5.1 Signal Point by Signal Point Tolerance Design |
|
|
269 | (1) |
|
15.5.1.1 Factors and Experimental Layout |
|
|
269 | (1) |
|
15.5.1.2 Analysis of Variance (ANOVA) for Each Injection Point |
|
|
269 | (1) |
|
|
269 | (1) |
|
15.5.2 Dynamic Tolerance Design |
|
|
270 | (1) |
|
15.5.2.1 Dynamic Analysis of Variance |
|
|
271 | (1) |
|
15.5.2.2 Dynamic Loss Function |
|
|
273 | (2) |
|
|
275 | (3) |
|
|
275 | (2) |
|
15.6.2 Recommendations for Taguchi Methods |
|
|
277 | (1) |
|
|
278 | (1) |
|
15.7 Reference and Further Reading |
|
|
278 | (1) |
|
16 General Purpose Actuator Robust Assessment and Benchmark Study |
|
|
279 | (20) |
|
|
|
279 | (1) |
|
|
280 | (1) |
|
|
280 | (6) |
|
16.3.1 Robust Assessment Measurement Method |
|
|
281 | (1) |
|
|
281 | (1) |
|
16.3.1.2 Data Acquisition |
|
|
284 | (1) |
|
16.3.1.3 Data Analysis Strategy |
|
|
285 | (1) |
|
|
286 | (10) |
|
16.4.1 Scope and P-Diagram |
|
|
286 | (1) |
|
|
286 | (4) |
|
16.4.3 Signal and Noise Strategy |
|
|
290 | (1) |
|
|
291 | (1) |
|
|
291 | (1) |
|
|
291 | (5) |
|
|
296 | (1) |
|
|
297 | (1) |
|
|
297 | (2) |
|
17 Optimization of a Discrete Floating MOS Gate Driver |
|
|
299 | (16) |
|
Delphi-Delco Electronic Systems |
|
|
|
299 | (1) |
|
|
300 | (2) |
|
|
302 | (1) |
|
17.4 Developing the "Ideal" Function |
|
|
302 | (3) |
|
|
305 | (1) |
|
17.6 Control Factors and Levels |
|
|
305 | (1) |
|
17.7 Experiment Strategy and Measurement System |
|
|
306 | (1) |
|
17.8 Parameter Design Experiment Layout |
|
|
306 | (1) |
|
|
307 | (1) |
|
|
307 | (4) |
|
17.11 Two-Step Optimization |
|
|
311 | (1) |
|
|
312 | (1) |
|
|
312 | (3) |
|
|
314 | (1) |
|
18 Reformer Washcoat Adhesion on Metallic Substrates |
|
|
315 | (26) |
|
Delphi Automotive Systems |
|
|
|
315 | (1) |
|
|
316 | (1) |
|
|
317 | (3) |
|
18.3.1 The Ideal Function |
|
|
318 | (1) |
|
|
318 | (1) |
|
|
319 | (1) |
|
18.3.3.1 Alloy Composition |
|
|
319 | (1) |
|
18.3.3.2 Washcoat Composition |
|
|
320 | (1) |
|
18.3.3.3 Slurry Parameters |
|
|
320 | (1) |
|
18.3.3.4 Cleaning Procedures |
|
|
320 | (1) |
|
|
320 | (1) |
|
18.4 Control Factor Levels |
|
|
320 | (1) |
|
|
320 | (2) |
|
|
320 | (1) |
|
|
320 | (2) |
|
18.6 Description of Experiment |
|
|
322 | (1) |
|
|
322 | (1) |
|
18.6.2 Orthogonal Array and Inner Array |
|
|
323 | (1) |
|
18.6.3 Signal-to-Noise and Beta Calculations |
|
|
323 | (1) |
|
|
323 | (1) |
|
18.7 Two Step Optimization and Prediction |
|
|
323 | (6) |
|
|
329 | (1) |
|
|
329 | (1) |
|
|
329 | (5) |
|
18.8.1 Design Improvement |
|
|
329 | (5) |
|
18.9 Measurement System Evaluation |
|
|
334 | (1) |
|
|
334 | (2) |
|
18.11 Supplemental Background Information |
|
|
336 | (4) |
|
|
340 | (1) |
|
18.13 Reference and Further Reading |
|
|
340 | (1) |
|
19 Making Better Decisions Faster: Sequential Application of Robust Engineering to Math-Models, CAE Simulations, and Accelerated Testing |
|
|
341 | (26) |
|
|
|
341 | (1) |
|
|
342 | (3) |
|
19.2.1 Thermal Equivalent Circuit — Detailed |
|
|
343 | (1) |
|
19.2.2 Thermal Equivalent Circuit — Simplified |
|
|
343 | (1) |
|
19.2.3 Closed Form Solution |
|
|
343 | (2) |
|
|
345 | (2) |
|
19.3.1 Thermal Robustness Design Template |
|
|
345 | (1) |
|
19.3.2 Critical Design Parameters for Thermal Robustness |
|
|
345 | (1) |
|
19.3.3 Cascade Learning (aka Leveraged Knowledge) |
|
|
346 | (1) |
|
19.3.4 Test Taguchi Robust Engineering Methodology |
|
|
346 | (1) |
|
|
347 | (17) |
|
19.4.1 Scope and P-Diagram |
|
|
347 | (1) |
|
|
347 | (2) |
|
19.4.3 Signal and Noise Strategy |
|
|
349 | (1) |
|
|
350 | (1) |
|
19.4.5 Control Factors and Levels |
|
|
350 | (1) |
|
19.4.6 Math-Model Generated Data |
|
|
351 | (1) |
|
|
351 | (3) |
|
19.4.8 Thermal Robustness (Signal-to-Noise) |
|
|
354 | (2) |
|
19.4.9 Subsystem Thermal Resistance (Beta) |
|
|
356 | (1) |
|
19.4.10 Prediction and Confirmation |
|
|
357 | (5) |
|
|
362 | (2) |
|
|
364 | (2) |
|
|
365 | (1) |
|
|
366 | (1) |
|
20 Pressure Switch Module Normally Open Feasibility Investigation and Supplier Competition |
|
|
367 | (20) |
|
|
|
367 | (1) |
|
|
368 | (2) |
|
20.2.1 Current Production Pressure Switch Module — Detailed |
|
|
368 | (1) |
|
20.2.2 Current Production (N.C.) Switching Element — Detailed |
|
|
369 | (1) |
|
|
370 | (1) |
|
|
370 | (13) |
|
20.4.1 Scope and P-Diagram |
|
|
370 | (1) |
|
|
371 | (1) |
|
|
372 | (1) |
|
|
372 | (1) |
|
20.4.5 Control Factors and Levels |
|
|
373 | (1) |
|
|
374 | (1) |
|
|
375 | (4) |
|
20.4.8 Prediction and Confirmation |
|
|
379 | (4) |
|
|
383 | (1) |
|
20.5 Summary and Conclusions |
|
|
383 | (6) |
|
|
385 | (2) |
Part Four Manufacturing Process Optimization |
|
387 | (40) |
|
21 Robust Optimization of a Lead-Free Reflow Soldering Process |
|
|
389 | (14) |
|
Delphi Delco Electronics Systems |
|
|
|
|
389 | (1) |
|
|
390 | (1) |
|
|
391 | (5) |
|
21.3.1 Robust Engineering Methodology |
|
|
391 | (3) |
|
|
394 | (2) |
|
|
396 | (1) |
|
21.4 Results and Discussion |
|
|
396 | (5) |
|
21.4.1 Visual Scoring Results |
|
|
396 | (4) |
|
|
400 | (1) |
|
|
401 | (1) |
|
|
401 | (1) |
|
|
402 | (1) |
|
|
402 | (1) |
|
22 Catalyst Slurry Coating Process Optimization for Diesel Catalyzed Particulate Traps |
|
|
403 | (24) |
|
Delphi Energy and Chassis Systems |
|
|
|
403 | (1) |
|
|
404 | (1) |
|
|
405 | (1) |
|
|
406 | (1) |
|
22.4.1 Initial Performance |
|
|
406 | (1) |
|
22.5 First Parameter Design Experiment |
|
|
406 | (10) |
|
|
407 | (2) |
|
|
409 | (1) |
|
22.5.3 Measurement System Evaluation |
|
|
409 | (2) |
|
|
411 | (1) |
|
22.5.5 Factors and Levels |
|
|
411 | (1) |
|
22.5.6 Compound Noise Strategy |
|
|
412 | (1) |
|
22.5.7 Parameter Design Experiment Layout (1) |
|
|
412 | (2) |
|
|
414 | (1) |
|
|
414 | (1) |
|
22.5.10 Two-Step Optimization and Prediction |
|
|
415 | (1) |
|
22.5.11 Predicted Performance Improvement Before and After |
|
|
416 | (1) |
|
22.6 Follow-up Parameter Design Experiment |
|
|
416 | (3) |
|
22.6.1 Parameter Design Experiment Layout (2) |
|
|
417 | (1) |
|
22.6.2 Means Plots for Signal-to-Noise Ratios |
|
|
417 | (1) |
|
22.6.3 Confirmation Results in Tulsa |
|
|
417 | (1) |
|
22.6.4 Noise Factor Q Affect on Slurry Coating |
|
|
417 | (2) |
|
22.7 Transfer to Florange |
|
|
419 | (5) |
|
22.7.1 Ideal Function and Parameter Diagram |
|
|
421 | (1) |
|
22.7.2 Parameter Design Experiment Layout (3) |
|
|
421 | (2) |
|
22.7.3 Means Plots for Signal-to-Noise Ratios |
|
|
423 | (1) |
|
22.7.4 Prediction and Confirmation |
|
|
423 | (1) |
|
22.7.5 Process Capability |
|
|
423 | (1) |
|
|
424 | (3) |
|
|
424 | (3) |
Index |
|
427 | |