Muutke küpsiste eelistusi

E-raamat: Robust Subspace Estimation Using Low-Rank Optimization: Theory and Applications

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Various fundamental applications in computer vision and machine learning require finding the basis of a certain subspace. Examples of such applications include face detection, motion estimation, and activity recognition. An increasing interest has been recently placed on this area as a result of significant advances in the mathematics of matrix rank optimization. Interestingly, robust subspace estimation can be posed as a low-rank optimization problem, which can be solved efficiently using techniques such as the method of Augmented Lagrange Multiplier. In this book, the authors discuss fundamental formulations and extensions for low-rank optimization-based subspace estimation and representation. By minimizing the rank of the matrix containing observations drawn from images, the authors demonstrate how to solve four fundamental computer vision problems, including video denosing, background subtraction, motion estimation, and activity recognition.

1 Introduction
1(8)
1.1 Overview and Motivation
1(2)
1.2 Fundamental Applications for Low-Rank Optimization
3(4)
1.2.1 Underwater Scene Reconstruction
4(1)
1.2.2 Simultaneous Video Stabilization and Moving Object Detection
5(1)
1.2.3 Motion Decomposition of Lagrangian Particle Trajectories
5(1)
1.2.4 Complex Event Recognition
6(1)
1.3 Book Organization
7(2)
2 Background and Literature Review
9(12)
2.1 Linear Subspace Estimation
9(2)
2.2 Low-Rank Representation
11(3)
2.3 Turbulence Mitigation and Video Denoising
14(2)
2.4 Moving Object Detection
16(1)
2.5 Motion Trajectories and Activity Recognition
16(1)
2.6 Complex Event Recognition
17(1)
2.7 Summary
18(3)
3 Seeing Through Water: Underwater Scene Reconstruction
21(16)
3.1 Introduction
21(2)
3.2 Robust Registration
23(4)
3.2.1 Frame Blurring
25(2)
3.3 Sparse Noise Elimination
27(3)
3.3.1 From Stage 1 to Stage 2
28(2)
3.4 Experiments
30(3)
3.5 Summary
33(4)
4 Simultaneous Turbulence Mitigation and Moving Object Detection
37(18)
4.1 Introduction
37(2)
4.2 Approach
39(6)
4.2.1 Three-Term Decomposition
41(1)
4.2.2 Turbulence Model
42(2)
4.2.3 Restoring Force
44(1)
4.3 Algorithm and Implementation Details
45(4)
4.3.1 Pre-processing
45(1)
4.3.2 Determining the Optimization Parameters
45(2)
4.3.3 Discussion of the Three-Term Model
47(2)
4.4 Experiments
49(5)
4.5 Summary
54(1)
5 Action Recognition by Motion Trajectory Decomposition
55(14)
5.1 Introduction
55(3)
5.2 Action Recognition Framework
58(6)
5.2.1 Lagrangian Particle Advection
58(1)
5.2.2 Independent Object Trajectory Extraction
59(3)
5.2.3 Action Description and Recognition
62(2)
5.3 Experiment Results
64(3)
5.3.1 APHill Action Recognition
64(1)
5.3.2 ARG-Aerial Action Recognition
65(1)
5.3.3 HOHA Action Recognition
66(1)
5.3.4 UCF Sports Action Recognition
66(1)
5.3.5 Action Recognition from Static Cameras
67(1)
5.4 Summary
67(2)
6 Complex Event Recognition Using Constrained Rank Optimization
69(26)
6.1 Introduction
69(3)
6.2 Low-Rank Complex Event Representation
72(2)
6.3 Optimizing the Constrained Low-Rank Problem
74(2)
6.4 Experiments
76(17)
6.4.1 TRECVID MED 2011 Event Collection
78(3)
6.4.2 TRECVID MED 2012
81(1)
6.4.3 Refining the Concept Representation
82(11)
6.5 Summary
93(2)
7 Concluding Remarks
95(6)
7.1 Summary of Methods
96(1)
7.2 Implementation Challenges
97(1)
7.3 What's Next?
98(3)
8 Extended Derivations for
Chapter 4
101(8)
8.1 Derivation of the Update Step for Component A
101(1)
8.2 Derivation of the Update Step for Component O
102(2)
8.3 Derivation of the Update Step for Component E
104(1)
8.4 Proof of Theorem 2
104(1)
8.5 Proofs of the Lemmas
105(4)
References 109