Preface |
|
xv | |
|
1 Smart Health Care Development: Challenges and Solutions |
|
|
1 | (20) |
|
|
|
|
|
2 | (1) |
|
|
3 | (7) |
|
|
4 | (1) |
|
|
5 | (2) |
|
1.2.3 Wearable Sensors--Head to Toe |
|
|
7 | (1) |
|
|
8 | (2) |
|
1.3 Intelligent Healthcare |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
11 | (2) |
|
1.6 Technologies--Data Cognitive |
|
|
13 | (2) |
|
|
13 | (1) |
|
|
14 | (1) |
|
|
14 | (1) |
|
1.7 Adoption Technologies |
|
|
15 | (1) |
|
|
15 | (6) |
|
|
15 | (6) |
|
2 Working of Mobile Intelligent Agents on the Web--A Survey |
|
|
21 | (28) |
|
|
|
|
21 | (2) |
|
|
23 | (24) |
|
2.3 Comparative Study of the Mobile Crawlers |
|
|
47 | (1) |
|
|
47 | (2) |
|
|
47 | (2) |
|
3 Power Management Scheme for Photovoltaic/Battery Hybrid System in Smart Grid |
|
|
49 | (18) |
|
|
|
3.1 Power Management Scheme |
|
|
50 | (1) |
|
3.2 Internal Power Flow Management |
|
|
50 | (4) |
|
|
51 | (2) |
|
|
53 | (1) |
|
3.3 Voltage Source Control |
|
|
54 | (4) |
|
|
55 | (1) |
|
3.3.2 Space Vector Pulse Width Modulation |
|
|
56 | (1) |
|
3.3.3 Park Transformation (abc to dqO) |
|
|
57 | (1) |
|
3.4 Simulation Diagram and Results |
|
|
58 | (9) |
|
|
58 | (5) |
|
|
63 | (2) |
|
|
65 | (2) |
|
4 Analysis: A Neural Network Equalizer for Channel Equalization by Particle Swarm Optimization for Various Channel Models |
|
|
67 | (18) |
|
|
|
|
|
68 | (4) |
|
|
72 | (4) |
|
|
73 | (1) |
|
4.2.1.1 Tapped Delay Line Model |
|
|
74 | (1) |
|
4.2.1.2 Stanford University Interim (SUI) Channel Models |
|
|
75 | (1) |
|
4.2.2 Artificial Neural Network |
|
|
75 | (1) |
|
4.3 Functional Link Artificial Neural Network |
|
|
76 | (1) |
|
4.4 Particle Swarm Optimization |
|
|
76 | (1) |
|
4.5 Result and Discussion |
|
|
77 | (4) |
|
4.5.1 Convergence Analysis |
|
|
77 | (2) |
|
4.5.2 Comparison Between Different Parameters |
|
|
79 | (1) |
|
4.5.3 Comparison Between Different Channel Models |
|
|
80 | (1) |
|
|
81 | (4) |
|
|
82 | (3) |
|
5 Implementing Hadoop Container Migrations in OpenNebula Private Cloud Environment |
|
|
85 | (20) |
|
|
|
|
|
|
|
|
86 | (4) |
|
5.1.1 Hadoop Architecture |
|
|
86 | (2) |
|
5.1.2 Hadoop and Big Data |
|
|
88 | (1) |
|
5.1.3 Hadoop and Virtualization |
|
|
88 | (1) |
|
5.1.4 What is OpenNebula? |
|
|
89 | (1) |
|
|
90 | (9) |
|
5.2.1 Performance Analysis of Hadoop |
|
|
90 | (1) |
|
5.2.2 Evaluating Map Reduce on Virtual Machines |
|
|
91 | (3) |
|
5.2.3 Virtualizing Hadoop Containers |
|
|
94 | (1) |
|
5.2.4 Optimization of Hadoop Cluster Using Cloud Platform |
|
|
95 | (1) |
|
5.2.5 Heterogeneous Clusters in Cloud Computing |
|
|
96 | (1) |
|
5.2.6 Performance Analysis and Optimization in Hadoop |
|
|
97 | (1) |
|
5.2.7 Virtual Technologies |
|
|
97 | (1) |
|
|
98 | (1) |
|
5.2.9 Scheduling of Hadoop VMs |
|
|
98 | (1) |
|
|
99 | (1) |
|
|
100 | (5) |
|
|
101 | (4) |
|
6 Transmission Line Inspection Using Unmanned Aerial Vehicle |
|
|
105 | (22) |
|
|
|
|
|
106 | (1) |
|
6.1.1 Unmanned Aerial Vehicle |
|
|
106 | (1) |
|
|
106 | (1) |
|
|
107 | (1) |
|
|
108 | (1) |
|
|
109 | (2) |
|
|
111 | (1) |
|
|
111 | (1) |
|
|
112 | (1) |
|
|
113 | (1) |
|
6.9 Electronic Speed Control |
|
|
113 | (2) |
|
|
115 | (1) |
|
|
116 | (1) |
|
|
116 | (2) |
|
6.13 Role of Sensors in the Proposed System |
|
|
118 | (2) |
|
6.13.1 Accelerometer and Gyroscope |
|
|
118 | (1) |
|
|
118 | (1) |
|
6.13.3 Barometric Pressure Sensor |
|
|
119 | (1) |
|
6.13.4 Global Positioning System |
|
|
119 | (1) |
|
6.14 Wireless Communication |
|
|
120 | (1) |
|
|
120 | (1) |
|
|
121 | (1) |
|
|
121 | (1) |
|
6.18 Results and Discussion |
|
|
121 | (3) |
|
|
124 | (3) |
|
|
125 | (2) |
|
7 Smart City Infrastructure Management System Using IoT |
|
|
127 | (1) |
|
|
|
|
|
|
128 | (11) |
|
7.2 Major Challenges in IoT-Based Technology |
|
|
129 | (2) |
|
7.2.1 Peer to Peer Communication Security |
|
|
129 | (1) |
|
7.2.2 Objective of Smart Infrastructure |
|
|
130 | (1) |
|
7.3 Internet of Things (IoT) |
|
|
131 | (4) |
|
7.3.1 Key Components of Components of IoT |
|
|
131 | (1) |
|
|
132 | (1) |
|
7.3.1.2 HTTP (HyperText Transfer Protocol) |
|
|
132 | (1) |
|
7.3.1.3 LoRaWan (Long Range Wide Area Network) |
|
|
133 | (1) |
|
|
133 | (1) |
|
|
133 | (1) |
|
|
133 | (1) |
|
7.3.2.1 Message Queue Telemetry Transport (MQTT) |
|
|
133 | (1) |
|
7.3.2.2 Constrained Application Protocol (CoAP) |
|
|
134 | (1) |
|
7.3.2.3 Advanced Message Queuing Protocol (AMQP) |
|
|
134 | (1) |
|
|
134 | (1) |
|
7.4 Machine Learning-Based Smart Decision-Making Process |
|
|
135 | (1) |
|
|
136 | (3) |
|
|
138 | (1) |
|
8 Lightweight Cryptography Algorithms for IoT Resource-Starving Devices |
|
|
139 | (32) |
|
|
|
|
|
|
139 | (2) |
|
8.1.1 Need of the Cryptography |
|
|
140 | (1) |
|
8.2 Challenges on Lightweight Cryptography |
|
|
141 | (1) |
|
8.3 Hashing Techniques on Lightweight Cryptography |
|
|
142 | (10) |
|
8.4 Applications on Lighweight Cryptography |
|
|
152 | (15) |
|
|
167 | (4) |
|
|
168 | (3) |
|
9 Pre-Learning-Based Semantic Segmentation for LiDAR Point Cloud Data Using Self-Organized Map |
|
|
171 | (18) |
|
|
|
|
172 | (1) |
|
|
173 | (1) |
|
9.2.1 Semantic Segmentation for Images |
|
|
173 | (1) |
|
9.3 Semantic Segmentation for LiDAR Point Cloud |
|
|
173 | (2) |
|
|
175 | (5) |
|
|
175 | (1) |
|
|
175 | (4) |
|
9.4.3 Pre-Learning Processing |
|
|
179 | (1) |
|
9.5 Region of Interest (RoI) |
|
|
180 | (1) |
|
9.6 Registration of Point Cloud |
|
|
181 | (1) |
|
9.7 Semantic Segmentation |
|
|
181 | (1) |
|
9.8 Self-Organized Map (SOM) |
|
|
182 | (1) |
|
|
183 | (3) |
|
|
186 | (3) |
|
|
187 | (2) |
|
10 Smart Load Balancing Algorithms in Cloud Computing--A Review |
|
|
189 | (30) |
|
|
|
|
|
|
|
189 | (3) |
|
|
192 | (1) |
|
10.2.1 Security 8c Routing |
|
|
192 | (1) |
|
10.2.2 Storage/Replication |
|
|
192 | (1) |
|
10.2.3 Spatial Spread of the Cloud Nodes |
|
|
192 | (1) |
|
|
193 | (1) |
|
10.2.5 Algorithm Complexity |
|
|
193 | (1) |
|
|
193 | (8) |
|
|
201 | (1) |
|
10.5 Discussion & Comparison |
|
|
202 | (1) |
|
|
202 | (17) |
|
|
216 | (3) |
|
11 A Low-Cost Wearable Remote Healthcare Monitoring System |
|
|
219 | (24) |
|
|
|
|
219 | (3) |
|
|
220 | (1) |
|
11.1.2 Objective of the Study |
|
|
221 | (1) |
|
|
222 | (4) |
|
11.2.1 Remote Healthcare Monitoring Systems |
|
|
222 | (2) |
|
11.2.2 Pulse Rate Detection |
|
|
224 | (1) |
|
11.2.3 Temperate Measurement |
|
|
225 | (1) |
|
|
225 | (1) |
|
|
226 | (10) |
|
|
226 | (1) |
|
11.3.2 Pulse Rate Detection System |
|
|
227 | (3) |
|
11.3.3 Fall Detection System |
|
|
230 | (1) |
|
11.3.4 Temperature Detection System |
|
|
231 | (3) |
|
|
234 | (1) |
|
|
234 | (2) |
|
11.4 Results and Discussions |
|
|
236 | (3) |
|
11.4.1 System Implementation |
|
|
236 | (1) |
|
11.4.2 Fall Detection Results |
|
|
236 | (1) |
|
|
236 | (3) |
|
|
239 | (1) |
|
|
240 | (3) |
|
|
241 | (2) |
|
12 IoT-Based Secure Smart Infrastructure Data Management |
|
|
243 | (14) |
|
|
|
|
|
|
244 | (1) |
|
12.1.1 List of Security Threats Related to the Smart IoT Network |
|
|
244 | (1) |
|
12.1.2 Major Application Areas of IoT |
|
|
244 | (1) |
|
12.1.3 IoT Threats and Security Issues |
|
|
245 | (1) |
|
12.1.4 Unpatched Vulnerabilities |
|
|
245 | (1) |
|
12.1.5 Weak Authentication |
|
|
245 | (1) |
|
|
245 | (1) |
|
12.2 Types of Threats to Users |
|
|
245 | (1) |
|
12.3 Internet of Things Security Management |
|
|
246 | (3) |
|
12.3.1 Managing IoT Devices |
|
|
246 | (1) |
|
12.3.2 Role of External Devices in IoT Platform |
|
|
247 | (1) |
|
12.3.3 Threats to Other Computer Networks |
|
|
248 | (1) |
|
12.4 Significance of IoT Security |
|
|
249 | (1) |
|
12.4.1 Aspects of Workplace Security |
|
|
249 | (1) |
|
12.4.2 Important IoT Security Breaches and IoT Attacks |
|
|
250 | (1) |
|
12.5 IoT Security Tools and Legislation |
|
|
250 | (1) |
|
12.6 Protection of IoT Systems and Devices |
|
|
251 | (2) |
|
12.6.1 IoT Issues and Security Challenges |
|
|
251 | (1) |
|
12.6.2 Providing Secured Connections |
|
|
252 | (1) |
|
12.7 Five Ways to Secure IoT Devices |
|
|
253 | (2) |
|
|
255 | (2) |
|
|
255 | (2) |
|
13 A Study of Addiction Behavior for Smart Psychological Health Care System |
|
|
257 | (16) |
|
|
|
|
258 | (1) |
|
13.2 Basic Criteria of Addiction |
|
|
258 | (1) |
|
13.3 Influencing Factors of Addiction Behavior |
|
|
259 | (3) |
|
|
259 | (1) |
|
13.3.2 Environment Influence |
|
|
260 | (2) |
|
|
262 | (1) |
|
13.3.4 Family Group and Society |
|
|
262 | (1) |
|
13.4 Types of Addiction and Their Effects |
|
|
262 | (7) |
|
|
263 | (1) |
|
13.4.2 Pornography Addiction |
|
|
264 | (1) |
|
13.4.3 Smart Phone Addiction |
|
|
265 | (2) |
|
13.4.4 Gambling Addiction |
|
|
267 | (1) |
|
|
267 | (1) |
|
|
268 | (1) |
|
13.4.7 Cigarette and Alcohol Addiction |
|
|
268 | (1) |
|
13.4.8 Status Expressive Addiction |
|
|
269 | (1) |
|
13.4.9 Workaholic Addiction |
|
|
269 | (1) |
|
|
269 | (4) |
|
|
270 | (3) |
|
14 A Custom Cluster Design With Raspberry Pi for Parallel Programming and Deployment of Private Cloud |
|
|
273 | (16) |
|
|
|
|
|
274 | (2) |
|
14.2 Cluster Design with Raspberry Pi |
|
|
276 | (3) |
|
14.2.1 Assembling Materials for Implementing Cluster |
|
|
276 | (1) |
|
|
277 | (1) |
|
14.2.1.2 RPi 4 Model B Specifications |
|
|
277 | (1) |
|
14.2.2 Setting Up Cluster |
|
|
278 | (1) |
|
14.2.2.1 Installing Raspbian and Configuring Master Node |
|
|
279 | (1) |
|
14.2.2.2 Installing MPICH and MPI4PY |
|
|
279 | (1) |
|
14.2.2.3 Cloning the Slave Nodes |
|
|
279 | (1) |
|
14.3 Parallel Computing and MPI on Raspberry Pi Cluster |
|
|
279 | (2) |
|
14.4 Deployment of Private Cloud on Raspberry Pi Cluster |
|
|
281 | (1) |
|
14.4.1 NextCloud Software |
|
|
281 | (1) |
|
|
281 | (5) |
|
14.5.1 NextCloud on RPi Cluster |
|
|
281 | (1) |
|
14.5.2 Parallel Computing on RPi Cluster |
|
|
282 | (4) |
|
14.6 Results and Discussions |
|
|
286 | (1) |
|
|
287 | (2) |
|
|
287 | (2) |
|
15 Energy Efficient Load Balancing Technique for Distributed Data Transmission Using Edge Computing |
|
|
289 | (14) |
|
|
|
|
290 | (1) |
|
15.2 Energy Efficiency Offloading Data Transmission |
|
|
290 | (1) |
|
15.2.1 Web-Based Offloading |
|
|
291 | (1) |
|
|
291 | (2) |
|
|
292 | (1) |
|
15.4 User-Level Online Offloading Framework (ULOOF) |
|
|
293 | (1) |
|
|
294 | (1) |
|
15.6 Computation Offloading and Resource Allocation |
|
|
295 | (1) |
|
15.7 Communication Technology |
|
|
296 | (1) |
|
|
297 | (2) |
|
|
299 | (4) |
|
|
299 | (4) |
|
16 Blockchain-Based SDR Signature Scheme With Time-Stamp |
|
|
303 | (14) |
|
|
|
|
|
303 | (1) |
|
|
304 | (2) |
|
16.2.1 Signatures With Hashes |
|
|
304 | (1) |
|
16.2.2 Signature Scheme With Server Support |
|
|
305 | (1) |
|
16.2.3 Signatures Scheme Based on Interaction |
|
|
305 | (1) |
|
|
306 | (5) |
|
|
306 | (1) |
|
|
306 | (1) |
|
16.3.1.2 Chains of Hashes |
|
|
306 | (1) |
|
16.3.2 Interactive Hash-Based Signature Scheme |
|
|
307 | (2) |
|
16.3.3 Significant Properties of Hash-Based Signature Scheme |
|
|
309 | (1) |
|
16.3.4 Proposed SDR Scheme Structure |
|
|
310 | (1) |
|
|
310 | (1) |
|
16.3.4.2 Server Behavior Authentication |
|
|
310 | (1) |
|
16.3.4.3 Pre-Authentication by Repository |
|
|
311 | (1) |
|
16.4 SDR Signature Scheme |
|
|
311 | (4) |
|
|
311 | (1) |
|
16.4.2 Key Generation Algorithm |
|
|
312 | (1) |
|
|
313 | (1) |
|
|
313 | (1) |
|
|
313 | (1) |
|
|
313 | (1) |
|
|
314 | (1) |
|
16.4.4 Verification Algorithm |
|
|
314 | (1) |
|
|
315 | (2) |
|
16.5.1 Signing Algorithm Supported by Server |
|
|
315 | (1) |
|
16.5.2 Repository Deployment |
|
|
316 | (1) |
|
16.5.3 SDR Signature Scheme Setup |
|
|
316 | (1) |
|
16.5.4 Results and Observation |
|
|
316 | (1) |
|
|
317 | (1) |
References |
|
317 | (4) |
Index |
|
321 | |