Muutke küpsiste eelistusi

E-raamat: Rubber Recycling: Challenges and Developments

Edited by (Gyeongsang National University, South Korea), Edited by (Gdansk University of Technology, Poland), Edited by (Indian Institute of Engineering Science and Technology, Shibpur, India), Edited by (Mahatma Gandhi University, India), Edited by (Mahatma Gandhi University, India)
  • Formaat: 337 pages
  • Sari: Green Chemistry Series Volume 59
  • Ilmumisaeg: 03-Oct-2018
  • Kirjastus: Royal Society of Chemistry
  • ISBN-13: 9781788013482
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 184,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 337 pages
  • Sari: Green Chemistry Series Volume 59
  • Ilmumisaeg: 03-Oct-2018
  • Kirjastus: Royal Society of Chemistry
  • ISBN-13: 9781788013482
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Rubber is used in a vast number of products, from tyres on vehicles to disposable surgical gloves. Increasingly both manufacturers and legislators are realising that recycling is essential for environmental sustainability and can improve the cost of manufacture. The volume of rubber waste produced globally makes it difficult to manage as accumulated waste rubber, especially in the form of tyres, can pose a significant fire risk. Recycling rubber not only prevents this problem but can produce new materials with desirable properties that virgin rubbers lack.



This book presents an up-to-date overview of the fundamental and applied aspects of renewability and recyclability of rubber materials, emphasising existing recycling technologies with significant potential for future applications along with a detailed outline of new technology based processing of rubber to reuse and recycle. This book will be of interest to researchers in both academia and industry as well as postgraduate students working in polymer chemistry, materials processing, materials science and engineering.
Chapter 1 Grinding of Waste Rubber
1(23)
Jaideep Adhikari
Anindya Das
Tridib Sinha
Prosenjit Saha
Jin Kuk Kim
1.1 Introduction
1(2)
1.2 Sources of Waste Rubbers
3(1)
1.3 Waste Rubber Grinding Routes
3(2)
1.4 Different Grinding Conditions
5(12)
1.4.1 Ambient Grinding
6(2)
1.4.2 Cryogenic Grinding
8(2)
1.4.3 Solution Grinding
10(1)
1.4.4 Grinding by Ozone Cracking
10(2)
1.4.5 Elastic Deformation Grinding
12(5)
1.5 Devulcanization Methods of Rubber
17(2)
1.5.1 Chemical
17(1)
1.5.2 Ultrasonic Devulcanization
17(1)
1.5.3 Microwave Devulcanization Method
18(1)
1.5.4 Biological Devulcanization Technique
18(1)
1.5.5 Other Devulcanization Techniques
19(1)
1.6 Relationship Between Energy and Particle Size for Grinding Routes
19(1)
1.7 Classification of Powdered Rubber
20(1)
1.8 Conclusion
21(3)
References
21(3)
Chapter 2 Surface Treatment of Rubber Waste
24(32)
X. Colom
M. Marin-Genesca
K. Formela
J. Canavate
2.1 Introduction
24(5)
2.2 Experimental
29(1)
2.2.1 Materials
29(1)
2.2.2 Equipment
30(1)
2.3 Surface Oxidation of the Rubber Waste Particles
30(9)
2.3.1 Results and Discussion
33(5)
2.3.2 Treatment of Gtr Using Oxidation Acids
38(1)
2.4 Coupling Agent and Chlorination Treatment on Rubber Waste Particle Surface
39(4)
2.4.1 Surface Treatment of GTR by TCI and Silane A-174
40(1)
2.4.2 Results and Discussion
40(2)
2.4.3 Treatment of GTR Using TCI and Silane
42(1)
2.5 Effect of Surface Modification of Rubber Waste Grafted with EPDM
43(9)
2.5.1 Results and Discussion
45(6)
2.5.2 Surface Modification of GTR Grafted with EPDM
51(1)
2.6 Global Conclusions
52(4)
References
53(3)
Chapter 3 Thermoplastic Elastomers Filled With GTR
56(27)
K. Formela
J. Haponiuk
S. Wang
X. Colom
3.1 Introduction
56(4)
3.2 Thermodynamics of Polymer Blends Containing GTR
60(1)
3.3 Preparation of Thermoplastics/GTR Blends in Variable Conditions
61(5)
3.3.1 Statistical Methods Used in Extrusion
61(1)
3.3.2 Importance of Extrusion Temperature
62(2)
3.3.3 Effect of Extrusion Settings
64(1)
3.3.4 Combined Impact of Thermoplastic Matrix Type and Screw Configuration
65(1)
3.4 Routes for Compatibilization of Thermoplastics/GTR Blends
66(7)
3.4.1 Cross-linking
67(1)
3.4.2 Oxidization or Reclamation of GTR
68(1)
3.4.3 Application of Additional Elastomer Phase
68(2)
3.4.4 Grafted Polymers
70(2)
3.4.5 Other Possibilities
72(1)
3.5 Conclusions
73(10)
References
73(10)
Chapter 4 Waste Rubber Based Composite Foams
83(19)
Mapoloko Mpho Phiri
Motshabi Alinah Sibeko
Shanganyani Percy Hlangothi
Maya Jacob John
4.1 Introduction
83(2)
4.2 Processing of Rubber Foam Composites
85(2)
4.2.1 Processing of Foamed Composites with GTR
85(2)
4.3 Properties of Foamed/GTR Composites
87(6)
4.3.1 Morphological Properties
87(3)
4.3.2 Physical Properties
90(1)
4.3.3 Mechanical Properties
90(1)
4.3.4 Damping Properties
91(2)
4.3.5 Thermal Properties
93(1)
4.4 Studies of Waste Rubber Foams
93(3)
4.5 Applications of Waste Rubber Foam Composites
96(1)
4.5.1 Non-structural Applications
96(1)
4.5.2 Lightweight Applications
97(1)
4.5.3 Sound and Vibration Absorption
97(1)
4.5.4 Insulation and Impact Isolation
97(1)
4.5.5 Drainage Systems
97(1)
4.6 Concluding Remarks
97(5)
References
98(4)
Chapter 5 Recycling of Tire Rubbers and Their Re-usability
102(26)
Partheban Manoharan
Kinsuk Naskar
5.1 Introduction
102(2)
5.2 Tire Composition, Tire Parts and End-of-life Tires
104(2)
5.3 Why Recycle Tire Rubbers?
106(1)
5.4 Recycling of Waste/Used Tire Rubbers
107(14)
5.4.1 Chemical De-vulcanization Method
109(2)
5.4.2 Mechanical Method
111(3)
5.4.3 Energy Recovery Method
114(3)
5.4.4 Microwave Method
117(1)
5.4.5 Ultrasonic Method
118(2)
5.4.6 Biological Method
120(1)
5.5 Reusability and Application of Tire Rubbers
121(2)
5.5.1 Civil Engineering Applications
121(1)
5.5.2 Commercial Application of De-vulcanized/Reclaimed Rubber
122(1)
5.5.3 Energy Production and Zinc Fertilizer
122(1)
5.5.4 Sound-proof Barriers
123(1)
5.6 Advantages of Reclaimed/De-vulcanized Rubber
123(1)
5.7 Disadvantages of Reclaimed/De-vulcanized Rubber
124(1)
5.8 Conclusion
124(4)
References
124(4)
Chapter 6 Testing and Industrial Characterization of Waste Rubber
128(32)
Suprabha Bandyopadhyay
Md. Minhajur Rahman
Soumanti Hazra
Jin Kuk Kim
Prosenjit Saha
6.1 Introduction
128(2)
6.2 What is Rubber?
130(1)
6.2.1 Natural Rubber
130(1)
6.2.2 Synthetic Rubber
130(1)
6.2.3 Some Specific Elastomers
131(1)
6.3 Rubber Testing and Techniques
131(6)
6.3.1 Instrumentation
131(2)
6.3.2 Physical Testing
133(4)
6.4 Disposal of Waste Rubber: A Serious Threat to Ecology
137(2)
6.5 Possible Explorations of Waste Rubber
139(1)
6.5.1 Rubber--Rubber Blends
139(1)
6.5.2 Concrete Modified by Waste Rubber
139(1)
6.5.3 Asphalt Binders
139(1)
6.6 Recycling of Rubber
139(9)
6.6.1 Thermo-mechanical Recycling of Rubber
140(3)
6.6.2 Waste Rubber Recycling by Microwave Devulcanization
143(2)
6.6.3 Devulcanization of Natural Rubber by Mechanochemical Means
145(3)
6.7 Characterizing Recycled Rubber Products
148(7)
6.7.1 Characterizing Cross-link Density in Rubber--Rubber Blends
148(1)
6.7.2 Morphological Characterizations for Rubber--Rubber Composites
149(3)
6.7.3 Characterizing the Mechanical and Thermal Properties of Devulcanized Rubber/Polypropylene Blends
152(2)
6.7.4 Concrete Modified by Waste Rubber
154(1)
6.8 Rheological Properties of Asphalt Binders Modified with Devulcanized Rubber
155(1)
6.8.1 Apparent Viscosity
155(1)
6.8.2 Performance Grade Critical Temperature
156(1)
6.8.3 Rutting Resistance Factor
156(1)
6.8.4 Phase Angle
156(1)
6.9 Conclusion
156(4)
References
157(3)
Chapter 7 High Performance Flooring Materials from Recycled Rubber
160(26)
Raghvendra Mishra
M. K. Aswathi
Sabu Thomas
7.1 Introduction
160(2)
7.2 Types of Flooring Materials
162(5)
7.3 Recycled Rubber as Flooring Materials
167(4)
7.4 Recycling and Processing of Scrap Rubber
171(4)
7.4.1 Mechanical Reclaiming Process
173(1)
7.4.2 Thermo-mechanical Reclaiming Process
173(1)
7.4.3 Cryomechanical Reclaiming Process
174(1)
7.4.4 Wet or Solution Grinding
174(1)
7.4.5 Microwave Method
174(1)
7.4.6 Ultrasonic Method
174(1)
7.4.7 Chemical Reclaiming Processes
174(1)
7.5 High Performance Flooring Applications of Recycled Rubber
175(3)
7.6 Advantages and Disadvantages of Rubber Flooring
178(2)
7.6.1 Advantages
178(2)
7.6.2 Disadvantages of Rubber Tile Floorings
180(1)
7.7 Conclusions
180(6)
References
181(5)
Chapter 8 Recycling of Individual Waste Rubbers
186(47)
S. Saiwari
W. K. Dierkes
J. W. M. Noordermeer
8.1 Introduction
186(2)
8.2 Theoretical Background
188(15)
8.2.1 Agents for Selective Scission of Sulfur Crosslinks
188(2)
8.2.2 Radical Scavengers
190(4)
8.2.3 Model for Analysis of De-vulcanization Efficiency
194(9)
8.3 De-vulcanization of SBR
203(13)
8.3.1 Thermal De-vulcanization of SBR
203(3)
8.3.2 Thermo-chemical De-vulcanization of SBR
206(5)
8.3.3 Chemical De-vulcanization of SBR with the Aid of Stabilizers
211(5)
8.4 De-vulcanization of BR
216(2)
8.5 De-vulcanization of NR
218(1)
8.6 De-vulcanization of CIIR
219(4)
8.7 De-vulcanization of EPDM
223(6)
8.7.1 Example of the Re-use of De-vulcanized Rubber: EPDM Roofing Foil
226(3)
8.8 Concluding Remarks
229(4)
References
230(3)
Chapter 9 Recycling of Latex Waste and Latex Products
233(26)
A. R. Azura
D. N. Syuhada
9.1 Introduction
233(1)
9.2 Latex Waste
234(1)
9.3 Recycling of Liquid Latex Waste
235(16)
9.3.1 Laminated Mould Cleaning
235(7)
9.3.2 Outdoor Cleaning
242(4)
9.3.3 Former Cleaning
246(3)
9.3.4 Blending of Waste NR Latex
249(1)
9.3.5 Recycling of Latex Paint
250(1)
9.4 Recycling of Latex Products
251(4)
9.4.1 Reclaiming of Latex Waste Products
251(2)
9.4.2 Latex Waste Products as Filler
253(2)
9.5 Conclusions
255(4)
References
255(4)
Chapter 10 Recycling of Rubber Blends for Durable Construction
259(16)
Sathish Kumar Palaniappan
Rajasekar Rathanasamy
Samir Kumar Pal
Ganesh Chandra Nayak
10.1 Introduction
259(2)
10.2 Recycling of Rubber Based Blends for Durable Construction
261(10)
10.3 Conclusion
271(4)
References
271(4)
Chapter 11 Recycling of Rubber Composites and Nanocomposites
275(35)
Ramakrishnan Shanmugam
Sathish Kumar Palaniappan
Rajasekar Rathanasamy
Krishnamurthy Kasilingam
Ganesh Chandra Nayak
11.1 Introduction
275(2)
11.2 Various Nanofillers
277(1)
11.3 Recycling of Rubber Nanocomposites
278(3)
11.4 Reclamation of Rubber Composites/Waste Tires
281(17)
11.5 Application of Rubber in Construction
298(6)
11.6 Conclusion
304(6)
References
305(5)
Chapter 12 Hybrid Nano-filler for Value Added Rubber Compounds for Recycling
310(20)
Kishor Kumar Sadasivuni
Sunita Rattan
Kalim Deshmukh
Aqib Muzaffar
M. Basheer Ahamed
S. K. Khadheer Pasha
Payal Mazumdar
Sadiya Waseem
Yves Grohens
Bijendra Kumar
12.1 Introduction
310(4)
12.2 Fabrication of Hybrid Nanofillers/Rubber Nanocomposites
314(4)
12.2.1 Intercalation Method
315(1)
12.2.2 In situ Polymerization
315(1)
12.2.3 Mechanical Mixing Method
315(1)
12.2.4 Sol--Gel Method
316(1)
12.2.5 Melt Compounding Method
317(1)
12.2.6 Solution Blending Method
318(1)
12.2.7 Latex Compounding Method
318(1)
12.3 Methods of Recycling
318(6)
12.3.1 Biological Method
319(1)
12.3.2 Ambient Mechanical Recycling Method
319(2)
12.3.3 Thermal Process of Recycling
321(1)
12.3.4 Pan Technique
321(1)
12.3.5 Digester Technique
321(1)
12.3.6 Alkaline Technique
321(1)
12.3.7 High-pressure Steam Technique
322(1)
12.3.8 Thermo-mechanical Recycling Process
322(1)
12.3.9 Cryogenic Grinding Process
322(1)
12.3.10 Pyrolysis Process
323(1)
12.3.11 Microwave Recycling Technique
323(1)
12.4 Effect of Nano-fillers on Rubber Recycling
324(1)
12.5 Conclusion
325(5)
References
326(4)
Subject Index 330
Sabu Thomas is professor at the School of Chemical Sciences, Mahatma Gandhi University, Kottayam, India. He received Ph.D from Indian Institute of Technology, Kharagpur and a B.Tech in Polymer Science and Technology from Cochin University. Prof. Thomas has gained additional experience as a visiting professor at a number of universities around the world. A Fellow of the Royal Society of Chemistry and a member of the American Chemical Society, his research has led to the publication of some 360 articles in international peer-reviewed journals, several book chapters and patents. The co-editor of four books, he has been a visiting professor and lecturer at some of the world's leading polymer research laboratories.