Muutke küpsiste eelistusi

E-raamat: Rubber to Rubber Adhesion

  • Formaat: PDF+DRM
  • Ilmumisaeg: 11-Aug-2021
  • Kirjastus: Wiley-Scrivener
  • Keel: eng
  • ISBN-13: 9781119769347
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 230,88 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 11-Aug-2021
  • Kirjastus: Wiley-Scrivener
  • Keel: eng
  • ISBN-13: 9781119769347
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

RUBBER TO RUBBER ADHESION Readers will get helpful ideas and in-depth knowledge about various aspects of rubber to rubber adhesion with particular reference to theory and practice.

This book covers various aspects of rubber to rubber adhesion which is important theoretically, as well as having practical implications. Rubber is a polymer whose glass transition temperature is well below the room temperature and hence the chains are very mobile at room and higher temperatures, making the material very versatile. Rubber is used in a large number of applications ranging from underground mining to tire to space vehicles. In all these cases, compounded rubbers are used in laminates and joined. The higher the adhesion, the higher will be the joint strength. The principles taught in adhesion science and technology are extensively used to prepare better joints and more useful products.

The book serves to satisfy a wide range of disciplines (polymers, materials, chemical, chemistry, mechanical, etc.) and starts with an introduction on rubber, then characterization of rubber, rubber surface and joints and, finally, other chapters on rubber to rubber adhesion. Scientific aspects to understand the technology are highlighted. It gives a comprehensive treatment on adhesion between unvulcanized elastomers, self-healing of elastomers, adhesion between compounded elastomers by co-crosslinking, adhesion between partially vulcanized compounded rubber and partially vulcanized compounded rubber, adhesion between vulcanized rubber and unvulcanized rubber- or partially vulcanized rubber, and adhesion between vulcanized rubber and vulcanized rubber.

Audience The book will be used by academicians in polymer science, materials science, chemical and mechanical engineering, chemistry, R & D personnel, industry people, as well as rubber and adhesion practitioners.
Foreword xv
Preface xvii
1 Introduction to Rubber
1(30)
1.1 History
1(2)
1.2 What is a Rubber?
3(2)
1.3 What is the Structure of Rubber?
5(4)
1.4 Why is Rubber Chosen Over Other Materials?
9(1)
1.5 Brief Outline of Preparation of Rubber
10(3)
1.6 Types of Rubber
13(4)
1.6.1 Natural Rubber (NR)
14(1)
1.6.2 Styrene - Butadiene Rubber (SBR)
14(1)
1.6.3 Polybutadiene Rubber (BR)
15(1)
1.6.4 Nitrile Rubber (NBR) and Hydrogenated Nitrile Butadiene Rubber (HNBR)
15(1)
1.6.5 Ethylene Propylene Rubber (EPDM/EPM)
16(1)
1.6.6 Chloroprene Rubber (CR)
16(1)
1.6.7 Butyl Rubber (IIR)
16(1)
1.7 Compounding of Rubbers
17(8)
1.7.1 Rubbers
17(3)
1.7.2 Vulcanizing Agents
20(1)
1.7.3 Accelerator and Accelerator-Activators
21(1)
1.7.4 Age Resistors
21(2)
1.7.5 Fillers
23(1)
1.7.6 Processing Aid
23(1)
1.7.7 Miscellaneous Ingredients
24(1)
1.8 The Processes of the Rubber Industry
25(3)
1.9 Why is Adhesion Important in Rubber Science?
28(3)
References
29(2)
2 Important Physical Properties for Understanding Rubber Adhesion and Measurements of Rubber Adhesion
31(162)
2.1 Molecular Weight of Polymer
33(8)
2.1.1 Definition
33(1)
2.1.1.1 Number Average Molecular Weight (Mn)
33(1)
2.1.1.2 Weight Average Molecular Weight (Mw)
34(1)
2.1.1.3 Z-Average Molecular Weight (Mz) and Viscosity Average Molecular Weight (Mv)
34(1)
2.1.1.4 Molecular Weight Distribution (MWD)
35(1)
2.1.2 Determination of Molecular Weight and MWD
36(1)
2.1.2.1 GPC
36(1)
2.1.2.2 Viscosity and Light Scattering Methods
37(1)
2.1.2.3 Use of 1H NMR Spectroscopy in Polymer Molecular Weight Analysis
38(1)
2.1.3 Relationship Between Adhesion and Molecular Weight in Unvulcanized Rubber
39(1)
References
40(1)
2.2 Glass Transition Temperature
41(9)
2.2.1 Introduction and Definition
41(1)
2.2.2 Glass Transition and Thermodynamics
42(2)
2.2.3 Factors on Which Tg Depends
44(1)
2.2.3.1 Chain Flexibility
44(1)
2.2.3.2 Bulky Side Group
44(1)
2.2.3.3 Polar Effect
44(1)
2.2.3.4 Monomer Structure and Tg
44(1)
2.2.3.5 Configurational Effect
45(1)
2.2.3.6 Effect of Crosslinks
46(1)
2.2.3.7 T and Plasticizer
46(1)
2.2.4 Determination of Tg
46(3)
References
49(1)
2.3 Solubility Parameter, Interaction Parameter and Interface
50(10)
2.3.1 Solubility Parameter
50(2)
2.3.2 Interaction Parameter
52(3)
2.3.3 Interface
55(4)
References
59(1)
2.4 Spectroscopic Techniques
60(13)
2.4.1 Introduction
60(1)
2.4.2 Principle of FTIR Spectroscopy
61(3)
2.4.3 Principle of Nuclear Magnetic Resonance (NMR) Spectroscopy
64(2)
2.4.4 Principle of X-Ray Photoelectron Spectroscopy (XPS)
66(4)
2.4.5 Chemical Groups and Adhesion
70(1)
References
71(2)
2.5 Microscopy
73(18)
2.5.1 Optical or Light Microscopy
73(1)
2.5.2 Scanning Electron Microscopy (SEM)
74(1)
2.5.2.1 Principle of SEM
74(2)
2.5.2.2 Sample Preparation and Measurements
76(3)
2.5.3 Transmission Electron Microscopy (TEM)
79(1)
2.5.4 Atomic Force Microscopy (AFM)
80(1)
2.5.4.1 Principle
81(1)
2.5.4.2 Operational Modes
82(1)
2.5.4.3 Detection Method
83(1)
2.5.4.4 Imaging and Analysis
84(5)
References
89(2)
2.6 Contact Angle, Surface Energy and Surface Roughness
91(19)
2.6.1 Contact Angle
91(1)
2.6.1.1 Concepts
91(1)
2.6.1.2 Measurements
92(1)
2.6.2 Surface Energy
93(6)
2.6.3 Work of Adhesion and Spreading Coefficient
99(2)
2.6.4 Theoretical Adhesion and Practical Adhesion
101(1)
2.6.5 Surface Roughness
101(1)
2.6.5.1 Concepts
101(2)
2.6.5.2 Measurements
103(5)
References
108(2)
2.7 Rheological Properties of Rubber
110(11)
2.7.1 Definition
110(1)
2.7.1.1 Shear Viscosity
110(1)
2.7.1.2 Shear Stress
111(1)
2.7.1.3 Shear Rate
111(1)
2.7.1.4 Viscous and Elastic Components
111(2)
2.7.2 Measurement of Viscosity and Elasticity
113(1)
2.7.2.1 Capillary Viscometer/Rheometer
113(3)
2.7.2.2 Rotational Rheometry/Viscometry
116(1)
2.7.2.3 Oscillatory Rheometry
117(3)
References
120(1)
2.8 Curing and Crosslinking of Rubber
121(10)
2.8.1 Concepts and Definitions
121(2)
2.8.2 Measurements
123(3)
2.8.3 Determination of Crosslink Density
126(1)
2.8.3.1 Chemical Method
126(2)
2.8.3.2 Physical Method
128(1)
2.8.4 Relationship Between Adhesion Strength and Crosslinking
128(1)
References
129(2)
2.9 Mechanical Properties
131(13)
2.9.1 Tensile Properties
131(1)
2.9.1.1 Unvulcanized Rubber
131(1)
2.9.1.2 Vulcanized Rubber
132(2)
2.9.2 Tearing Energy/Tear Strength
134(3)
2.9.3 Fatigue, Stress Relaxation and Creep of Rubber
137(5)
References
142(2)
2.10 Dynamical Mechanical Analysis (DMA)
144(13)
2.10.1 Introduction
144(1)
2.10.2 Operating Principles
145(3)
2.10.3 Temperature Sweep Test Using DMA
148(2)
2.10.4 Frequency Sweep Master Curves from Time-Temperature Superposition (TTS) Using DMA
150(3)
2.10.4.1 Terminal Relaxation Time (τte) from Plateau and Terminal Zone
153(1)
2.10.4.2 Self-Diffusion Coefficient (D)
154(1)
2.10.4.3 Onset of Transition Zone Relaxation Time (τte)
154(1)
2.10.4.4 Monomer Friction Coefficient, MFC (ξ0) from Transition Zone
154(1)
References
155(2)
2.11 Diffusion and Adhesion
157(14)
2.11.1 Concepts
157(1)
2.11.2 Diffusion Theory of Adhesion
158(1)
2.11.3 Methods to Identify Diffusion Across the Interface
158(1)
2.11.4 Self-Diffusion Coefficient
159(2)
2.11.5 Concept of Tack, Diffusion and Viscosity
161(3)
2.11.6 Models Related to Diffusion of Polymers
164(1)
2.11.6.1 Reptation Model
164(1)
2.11.6.2 Model Theory of Crack Healing
165(3)
References
168(3)
2.12 Test Methods for Rubber to Rubber Adhesion and Self-Healing
171(22)
2.12.1 Unvulcanized Rubber Test
171(7)
2.12.2 Vulcanized Rubber Test
178(9)
2.12.3 Tests for Self-Healing
187(2)
References
189(4)
3 Adhesion Between Unvulcanized Elastomers
193(76)
3.1 Introduction
193(2)
3.2 Autohesive Tack
195(74)
3.2.1 Autohesive Tack Criterion
196(1)
3.2.2 Theories Related to Autohesive Tack
197(1)
3.2.2.1 Diffusion Theory
197(2)
3.2.2.2 Contact Theory
199(2)
3.2.3 Factors Affecting Autohesive Tack Bond Formation Process
201(1)
3.2.3.1 Effect of Contact Time
201(3)
3.2.3.2 Effect of Contact Pressure
204(1)
3.2.3.3 Effect of Contact Temperature
204(2)
3.2.3.4 Effect of Surface Roughness
206(1)
3.2.4 Factors Affecting Autohesive Tack Bond Destruction Process
207(1)
3.2.4.1 Effect of Test Rate
207(1)
3.2.4.2 Effect of Test Temperature
207(1)
3.2.4.3 Effect of Bond Thickness
208(1)
3.2.5 Effect of Molecular Properties on Autohesive Tack
209(1)
3.2.5.1 Effect of Molecular Weight
209(1)
3.2.5.2 Effect of Microstructure
209(1)
3.2.5.3 Effect of Crystallinity
210(1)
3.2.5.4 Effect of Polar Groups
211(1)
3.2.6 Environmental Effects on Autohesive Tack
212(1)
3.2.6.1 Effect of Surface Oxidation
212(1)
3.2.6.2 Effect of Humidity
212(1)
3.2.7 Effect of Compounding Ingredients on Autohesive Tack
213(1)
3.2.7.1 Effect of Processing Oil
213(1)
3.2.7.2 Effect of Tackifiers
213(34)
3.2.8 Effect of Fillers
247(1)
3.2.8.1 Effect of Carbon Black and Silica on Autohesive Tack of Elastomers Used in the Rubber Industry
247(3)
3.2.8.2 Effect of Nanoclay on Autohesive Tack of Elastomers Used in the Rubber Industry
250(10)
References
260(9)
4 Self-Healing of Elastomers
269(36)
4.1 Introduction
269(3)
4.2 Examples
272(15)
4.2.1 Hydrogen Bonding
272(3)
4.2.2 Thermo Reversible Diels-Alder Chemistry
275(4)
4.2.3 Ionic Bonding
279(5)
4.2.4 Coordination Complexes
284(2)
4.2.5 Exchange of Disulfide Bonds
286(1)
4.2.6 Other Reactions
287(1)
4.3 Reactions on Various Rubbers
287(7)
4.4 External Healing Agents
294(1)
4.5 Self-Healing in Tire Industry
294(1)
4.6 Summary of Self-Healing System
295(10)
References
297(8)
5 Adhesion Between Compounded Elastomers by Co-Crosslinking
305(26)
5.1 Introduction
305(1)
5.2 Co-Crosslinking
306(25)
5.2.1 Adhesion Between Unvulcanized Rubber (Filled with Crosslinking Agents) and Unvulcanized Rubber (Filled with Crosslinking Agents) by Co-Crosslinking
310(19)
References
329(2)
6 Adhesion Between Partially Vulcanized Rubber and Partially Vulcanized Rubber
331(26)
6.1 Introduction
331(1)
6.2 Experiments of Chang and Gent
331(4)
6.3 Experiments of Bhowmick and Gent
335(5)
6.4 Experiments of Chun and Gent
340(5)
6.5 Experiments of Sarkar and Bhowmick
345(4)
6.6 Experiments of Gent and Lai
349(3)
6.7 Experiments of Ruch, David and Vallat
352(5)
References
355(2)
7 Adhesion Between Vulcanized Rubber and Unvulcanized Rubber or Partially Vulcanized Rubber
357(34)
7.1 Introduction
357(3)
7.2 Adhesion Between Vulcanized Rubber and Unvulcanized Rubber (Filled with Crosslinking Agents)
360(26)
7.3 Adhesion Between Vulcanized Rubber and Partially Vulcanized Rubber (Filled with Crosslinking Agents)
386(5)
References
389(2)
8 Adhesion Between Vulcanized Rubber and Vulcanized Rubber
391(22)
References 413(2)
Index 415
Dinesh Kumar Kotnees is an assistant professor in the Department of Metallurgical and Materials Engineering at the Indian Institute of Technology Patna (IIT Patna). Before joining IIT Patna he was working as a research scientist in General Electric Company (GE Plastics) Bangalore, India. Dr. Kotnees holds a PhD degree in Rubber Science and Technology from IIT Kharagpur.

Anil K. Bhowmick is currently at the Department of Chemical and Biomolecular Engineering at the University of Houston and a former Professor of Eminence, IIT Kharagpur, India. He was previously associated with the University of Akron, Ohio, USA, London School of Polymer Technology, London, and Tokyo Institute of Technology, Japan. He has more than 550 peer-reviewed international publications, 35 book chapters, and seven books. He holds twenty-one patents, including three US, three Japanese, and one German patent.