Muutke küpsiste eelistusi

E-raamat: Safety Factor Profile Control in a Tokamak

  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Control of the Safety Factor Profile in a Tokamak uses Lyapunov techniques to address a challenging problem for which even the simplest physically relevant models are represented by nonlinear, time-dependent, partial differential equations (PDEs). This is because of the spatiotemporal dynamics of transport phenomena (magnetic flux, heat, densities, etc.) in the anisotropic plasma medium.

Robustness considerations are ubiquitous in the analysis and control design since direct measurements on the magnetic flux are impossible (its estimation relies on virtual sensors) and large uncertainties remain in the coupling between the plasma particles and the radio-frequency waves (distributed inputs).

The Brief begins with a presentation of the reference dynamical model and continues by developing a Lyapunov function for the discretized system (in a polytopic linear-parameter-varying formulation). The limitations of this finite-dimensional approach motivate new developments in the infinite-dimensional framework. The text then tackles the construction of an input-to-state-stability Lyapunov function for the infinite-dimensional system that handles the medium anisotropy and provides a common basis for analytical robustness results. This function is used as a control-Lyapunov function and allows the amplitude and nonlinear shape constraints in the control action to be dealt with.

Finally, the Brief addresses important application- and implementation-specific concerns. In particular, the coupling of the PDE and the finite-dimensional subsystem representing the evolution of the boundary condition (magnetic coils) and the introduction of profile-reconstruction delays in the control loop (induced by solving a 2-D inverse problem for computing the magnetic flux) is analyzed. Simulation results are presented for various operation scenarios on Tore Supra (simulated with METIS) and on TCV (simulated with RAPTOR).

Control of the Safety Factor Profile in a Tokamak will be of interest to both academic and industrially-based researchers interested in nuclear energy and plasma-containment control systems, and graduate students in nuclear and control engineering.



This book covers construction of an input-to-state-stability-Lyapunov function for the infinite-dimensional system that provides a common base for the development of robustness results, used as a control-Lyapunov function in a Tokamak.
1 Introduction
1(10)
1.1 Challenges in Plasma Physics for Tokamaks
2(2)
1.2 Control Challenges for Distributed Parameter Systems
4(2)
1.3 Problem Statement and Background
6(1)
1.4 Main Contributions
7(1)
1.5 Outline
8(3)
References
9(2)
2 Mathematical Model of the Safety Factor and Control Problem Formulation
11(12)
2.1 Inhomogeneous Transport of the Poloidal Magnetic Flux
11(2)
2.2 Periferal Components Influencing the Poloidal Magnetic Flux
13(3)
2.2.1 Resistivity and Temperature Influence
13(1)
2.2.2 Inductive Current Sources
14(1)
2.2.3 Non-inductive Current: Sources and Nonlinearity
15(1)
2.3 Control Problem Formulation
16(7)
2.3.1 Equilibrium and Regulated Variation
16(3)
2.3.2 Interest of Choosing ψ as the Regulated Variable
19(1)
2.3.3 Control Challenges
20(1)
References
21(2)
3 A Poly topic LPV Approach for Finite-Dimensional Control
23(10)
3.1 LPV Model
24(1)
3.2 Controller Synthesis
25(3)
3.3 Results for a Tore Supra Plasma Shot
28(3)
3.3.1 Implementation
28(1)
3.3.2 Simulation Results
29(2)
3.4 Summary and Conclusions on the Polytopic Approach
31(2)
References
32(1)
4 Infinite-Dimensional Control-Lyapunov Function
33(28)
4.1 Lyapunov Functions for Distributed Parameter Systems
33(2)
4.2 Some Possible Lyapunov Functions
35(3)
4.2.1 First Candidate Lyapunov Function
36(1)
4.2.2 Second Candidate Lyapunov Function
37(1)
4.3 Selected Candidate Lyapunov Function and Nominal Stability
38(4)
4.3.1 Selected Lyapunov Function
39(3)
4.4 Input-to-State Stability and Robustness
42(4)
4.4.1 Disturbed Model
42(4)
4.5 D1-Input-to-State Stability
46(3)
4.5.1 Strict Lyapunov Function and Sufficient Conditions for D1-Input-to-State Stability
47(2)
4.6 Control of the Poloidal Magnetic Flux Profile in a Tokamak Plasma
49(12)
4.6.1 Stability and Numerical Computation of the Lyapunov Function
49(1)
4.6.2 ISS Property and Robust Unconstrained Control of the Magnetic Flux Gradient
50(4)
4.6.3 Using the Lyapunov Approach to Include Actuation Constraints
54(5)
References
59(2)
5 Controller Implementation
61(24)
5.1 Total Plasma Current Dynamic Model
62(3)
5.1.1 Perfect Decoupling and Cascade Interconnection of ISS Systems
63(1)
5.1.2 Interconnection Without Perfect Decoupling
64(1)
5.2 Modified Lyapunov Function
65(3)
5.3 Simulation Result: Closed-Loop Tracking Using METIS
68(6)
5.3.1 General Description
68(2)
5.3.2 Simulation Scenario: METIS, Independent Ip, Control, Large Variations of Pth, ICRH Heating Disturbance
70(2)
5.3.3 Simulation Scenario: METIS, Independent Ip Control, Large Variations of Nll, ICRH Heating Disturbance
72(2)
5.4 Some Preliminary Extensions
74(9)
5.4.1 Profile Reconstruction Delays
74(1)
5.4.2 Extension for TCV
74(9)
5.5 Summary and Conclusions
83(2)
References
83(2)
6 Conclusion
85(2)
References
86(1)
Appendix A Finding a Lyapunov Function 87(4)
Appendix B List of Acronyms, Physical Variables and Symbols 91(4)
Index 95