Muutke küpsiste eelistusi

E-raamat: Sample Preparation in LC-MS Bioanalysis

Edited by (Tulane University, New Orleans, LA), Edited by , Edited by
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 172,84 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Revised and Expanded Handbook Provides Comprehensive Introduction and Complete Instruction for Sample Preparation in Vital Category of Bioanalysis

Following in the footsteps of the previously published Handbook of LC-MS Bioanalysis, this book is a thorough and timely guide to all important sample preparation techniques used for quantitative Liquid Chromatography–Mass Spectrometry (LC-MS) bioanalysis of small and large molecules. LC-MS bioanalysis is a key element of pharmaceutical research and development, post-approval therapeutic drug monitoring, and many other studies used in human healthcare. 

While advances are continually being made in key aspects of LC-MS bioanalysis such as sensitivity and throughput, the value of research/study mentioned above is still heavily dependent on the availability of high-quality data, for which sample preparation plays the critical role. Thus, this text provides researchers in industry, academia, and regulatory agencies with detailed sample preparation techniques and step-by-step protocols on proper extraction of various analyte(s) of interest from biological samples for LC-MS quantification, in accordance with current health authority regulations and industry best practices. The three sections of the book with a total of 26 chapters cover topics that include:

  • Current basic sample preparation techniques (e.g., protein precipitation, liquid-liquid extraction, solid-phase extraction, salting-out assisted liquid-liquid extraction, ultracentrifugation and ultrafiltration, microsampling, sample extraction via electromembranes)
  • Sample preparation techniques for uncommon biological matrices (e.g., tissues, hair, skin, nails, bones, mononuclear cells, cerebrospinal fluid, aqueous humor)
  • Crucial aspects of LC-MS bioanalytical method development (e.g., pre-analytical considerations, derivation strategies, stability, non-specific binding) in addition to sample preparation techniques for challenging molecules (e.g., lipids, peptides, proteins, oligonucleotides, antibody-drug conjugates)

Sample Preparation in LC-MS Bioanalysis will prove a practical and highly valuable addition to the reference shelves of scientists and related professionals in a variety of fields, including pharmaceutical and biomedical research, mass spectrometry, and analytical chemistry, as well as practitioners in clinical pharmacology, toxicology, and therapeutic drug monitoring.

Arvustused

"A welcome reference which provides a complete overview of current and new approaches in sample preparation for LC-MS...To have an exhaustive compilation of strategies with practical tips and tricks can only be inspiring for the readers helping him to make the best choice for his specific challenge." Gérard Hopfgartner, Analytical and Bioanalytical Chemistry, January 2020

List of Contributors xvi
Preface xx
List of Abbreviations xxii
Part I: Current Sample Preparation Techniques in LC-MS Bioanalysis 1(200)
1 Basic Sample Preparation Techniques in LC-MS Bioanalysis: Protein Precipitation, Liquid-Liquid Extraction, and Solid-Phase Extraction
3(28)
Wenkui Li
Wenying Jian
Yunlin Fu
1.1 Introduction
3(1)
1.2 Physicochemical Properties of Drugs and Their Metabolites
4(1)
1.2.1 Hydrophilicity vs. Lipophilicity of Analyte(s)
4(1)
1.2.2 Protolytic Properties of Analyte(s)
4(1)
1.3 Pre-analytical Variables of Analyte(s) of Interest in Biological Matrix
5(2)
1.3.1 Stability
5(1)
1.3.2 Nonspecific Binding
6(1)
1.3.3 Protein Binding
6(1)
1.3.4 Blood-to-plasma Ratio and Red Blood Cell Partition
6(1)
1.4 Most Commonly Used Sample Preparation Methods in LC-MS Bioanalysis
7(20)
1.4.1 Protein Precipitation (PPT)
7(1)
1.4.1.1 Water-miscible Organic Solvents
7(1)
1.4.1.2 Acids
8(3)
1.4.2 Liquid-Liquid Extraction (LLE)
11(1)
1.4.2.1 Mechanism of LLE and Extraction Recovery
11(1)
1.4.2.2 Solvent in LLE
13(1)
1.4.2.3 General Procedures in LLE
14(1)
1.4.2.4 Application of LLE in LC-MS Bioanalysis
15(1)
1.4.2.5 Other Formats of LLE
17(1)
1.4.3 Solid-phase Extraction (SPE)
18(1)
1.4.3.1 SPE Stationary Phases (Sorbents)
18(1)
1.4.3.2 Common SPE Platforms in LC-MS Bioanalysis
19(1)
1.4.3.3 General SPE Workflows
20(1)
1.4.3.4 Other Formats of SPE
26(1)
1.4.4 Combination of PPT, LLE, and/or SPE in LC-MS Bioanalysis
26(1)
1.4.4.1 Combination of PPT and LLE
26(1)
1.4.4.2 Combination of PPT and SPE
26(1)
1.4.4.3 Combination of LLE and SPE
26(1)
1.4.5 Summary
27(1)
References
27(4)
2 Online Extraction and Column Switching Techniques in LC-MS Bioanalysis
31(14)
Yan Mao
Mike Huang
2.1 Introduction
31(1)
2.2 System Configuration
32(1)
2.2.1 Single-column System
32(1)
2.2.2 Dual-column System
32(1)
2.2.3 Staggered Parallel Online Extraction Systems
32(1)
2.3 Commonly Used Online Extraction Techniques
33(7)
2.3.1 Turbulent/High Flow Chromatography
33(2)
2.3.2 Restricted Access Media
35(1)
2.3.3 Monolithic Materials
35(1)
2.3.4 Hydrophilic Interaction Liquid Chromatography
36(1)
2.3.5 Immunoaffinity Extraction
37(1)
2.3.6 Disposable Extraction Cartridges-Online SPE
38(1)
2.3.7 Online Extraction of Dried Blood Spot (DBS) Samples
38(1)
2.3.8 SPE-MS
39(1)
2.4 Considerations for Utilizing Online Extraction Techniques
40(1)
2.4.1 Advantages and Limitations
40(1)
2.4.2 Strategies for Online Extraction Method Development
40(1)
2.5 Summary
41(1)
References
42(3)
3 Equilibrium Dialysis, Ultracentrifugation, and Ultrafiltration in LC-MS Bioanalysis
45(7)
Theo de Boer
Henri Meijering
3.1 Introduction
45(1)
3.2 Challenges and Considerations
46(1)
3.3 Experimental Procedures
46(3)
3.3.1 Equilibrium Dialysis
47(1)
3.3.2 Ultrafiltration
48(1)
3.3.3 Ultracentrifugation
49(1)
3.4 Summary
49(2)
References
51(1)
4 Phospholipid Depletion Techniques in LC-MS Bioanalysis
52(16)
Stacy Brown
Jennifer Carmical
4.1 Introduction
52(1)
4.2 Impact of Phospholipids on Bioanalytical Methods
52(3)
4.3 Investigating Matrix Effects Associated with Phospholipids
55(1)
4.4 Minimizing Matrix Effects Associated with Phospholipids
56(1)
4.4.1 Sample Dilution
56(1)
4.4.2 Column Manipulations
56(1)
4.4.3 Internal Standards
56(1)
4.4.4 Ionization Choice
56(1)
4.4.5 Other Experimental Modifications
57(1)
4.5 Removing Phospholipids Prior to LC-MS Analysis
57(3)
4.5.1 Protein Precipitations
57(1)
4.5.2 Liquid-Liquid Extraction and Supported Liquid Membranes
57(1)
4.5.3 Supported Liquid Extraction
58(1)
4.5.4 Electrostatic Removal
58(1)
4.5.5 Solid-Phase Extraction
58(2)
4.6 Example Methods that Demonstrate Successful Phospholipid Removal
60(3)
4.7 Conclusions
63(1)
Acknowledgement
64(1)
References
64(4)
5 Salting-out Assisted Liquid-Liquid Extraction (SALLE) in LC-MS Bioanalysis
68(8)
Jun Zhang
Xin Xiong
5.1 Introduction
68(1)
5.2 Considerations in Developing a SALLE Method
68(4)
5.2.1 Salts
68(3)
5.2.2 Water-Miscible Solvent
71(1)
5.2.3 pH
71(1)
5.3 Combination of SALLE with Other Extraction Techniques
72(1)
5.4 Matrix Effect in SALLE
72(1)
5.5 Miniaturization and Automatization
73(1)
5.6 Summary
73(1)
References
73(3)
6 Supported Liquid Extraction (SLE) in LC-MS Bioanalysis
76(9)
Zhongzhe Cheng
Hongliang Jiang
6.1 Introduction
76(1)
6.2 Principle of SLE
76(1)
6.3 Advantages and Limitation of SLE in Quantitative LC-MS Bioanalysis
77(2)
6.3.1 Advantages
77(1)
6.3.2 Limitation
78(1)
6.4 Key Consideration in Developing Robust SLE-LC-MS Bioanalytical Method
79(1)
6.5 Representative Protocols
80(1)
6.5.1 Material, Supplies, and Equipment
80(1)
6.5.2 Protocols for SLE Cartridge and Plate Processing
80(1)
6.6 Summary
81(1)
References
82(3)
7 Immunocapture in LC-MS Bioanalysis
85(13)
Ang Liu
7.1 Introduction
85(1)
7.2 Experimental Workflow and Optimization
85(1)
7.3 Considerations on the Selection of Capture Reagents and the Limitations
86(3)
7.4 Platforms for Immunocapture
89(1)
7.5 Internal Standard Selection
89(1)
7.6 Performance Evaluation
90(1)
7.7 Applications and Representative Protocols
91(3)
7.7.1 Endogenous Peptides/Proteins
91(1)
7.7.2 Protein-based Biotherapeutics
92(1)
7.7.3 Immunogenicity
93(1)
7.8 Validation Criteria and Regulatory Considerations
94(1)
7.9 Summary
95(1)
References
95(3)
8 Microextraction Techniques in LC-MS Bioanalysis
98(19)
Marcio Rodrigues
Ana Fortuna
Amilcar Falao
Gilberto Alves
8.1 Introduction
98(1)
8.2 Solid-Phase Microextraction
99(9)
8.2.1 Conventional Fiber SPME
99(3)
8.2.2 Stir-Bar Sorptive Extraction
102(1)
8.2.3 Thin-Film Microextraction
102(1)
8.2.4 In-Tube SPME
102(1)
8.2.5 In-Needle SPME
103(1)
8.2.5.1 Solid-Phase Dynamic Extraction
103(1)
8.2.5.2 Microextraction by Packed Sorbent
103(1)
8.2.5.3 Fiber-Packed Needle Microextraction
107(1)
8.2.6 In-Tip SPME
107(1)
8.2.7 New Sorbents for SPME
107(1)
8.2.7.1 Monolithic Sorbent
107(1)
8.2.7.2 Carbon Nanotubes
108(1)
8.3 Liquid-Phase Microextraction
108(5)
8.3.1 Single-Drop Microextraction
108(2)
8.3.2 Hollow Fiber Liquid-Phase Microextraction
110(1)
8.3.3 Dispersive Liquid-Liquid Microextraction
110(1)
8.3.4 Influence Factors on LPME Efficiency
111(2)
8.4 Summary
113(1)
Acknowledgements
113(1)
References
113(4)
9 Microsampling Applications with LC-MS Bioanalysis
117(11)
Chester L. Bowen
Matthew Barfield
9.1 Introduction
117(1)
9.2 Plasma Microsampling Considerations
118(3)
9.2.1 Sample Collection
118(1)
9.2.2 Interaction with Thixotropic Gel
118(2)
9.2.3 Sample Manipulation
120(1)
9.2.4 Extraction, LC-MS/MS Analysis, and Detection
120(1)
9.3 Dried Blood (Matrix) Spot (DBS) Considerations
121(2)
9.3.1 Sample Collection
121(1)
9.3.2 Sample Manipulation
122(1)
9.3.3 Extraction, LC-MS/MS Analysis, and Detection
123(1)
9.4 Volumetric Absorptive Microsampling (VAMS)
123(2)
9.4.1 Sample Collection
123(1)
9.4.2 Sample Manipulation
124(1)
9.4.3 Extraction, LC-MS/MS Analysis, and Detection
124(1)
9.5 Emerging Techniques
125(1)
9.6 Summary
126(1)
Acknowledgements
126(1)
References
126(2)
10 Nanomaterials for Sample Preparation in LC-MS Bioanalysis
128(11)
Rodrigo A. Gonzalez-Fuenzalida
Neus Jornet-Martinez
Rosa Herraez-Hernandez
Pilar Campins-Falco
10.1 Introduction
128(1)
10.2 Carbon Nanomaterials
128(5)
10.3 Metallic NPs
133(3)
10.3.1 Metal Nanoparticles
133(1)
10.3.2 Metal Oxide Nanoparticles
134(1)
10.4 Nanoporous Materials
135(1)
10.4.1 Polymeric Nanomaterials
135(1)
10.4.2 Mesoporous Materials
135(1)
10.4.3 Molecular Imprinted Polymers (MIPs)
136(1)
10.5 Future Perspectives
136(1)
Acknowledgements
136(1)
References
137(2)
11 Sample Preparation via Molecularly Imprinted Polymers (MIPs) in LC-MS Bioanalysis
139(13)
Myriam Diaz-Alvarez
Antonio Martin-Esteban
11.1 Introduction
139(1)
11.2 Preparation of MIPs
139(3)
11.2.1 Template and Monomer(s)
140(1)
11.2.2 Cross-linker
141(1)
11.2.3 Porogen
141(1)
11.3 MIPs for Sample Preparation in Bioanalysis
142(1)
11.3.1 Molecularly Imprinted Solid-phase Extraction (MISPE)
142(1)
11.3.1.1 Off-line Protocols
142(2)
11.3.1.2 Online Protocols
144(1)
11.3.1.3 In-line Protocols
145(1)
11.3.1.4 Other Protocols
146(1)
11.3.2 MIPs in Other Sample Preparation Techniques
146(1)
11.4 Fragment Imprinting
147(1)
11.5 Summary
147(1)
References
147(5)
12 Stir-bar Sorptive Extraction for Sample Preparation in LC-MS Bioanalysis
152(11)
Maria Kechagia
Maria Kissoudi
Victoria F. Samanidou
12.1 Introduction
152(1)
12.2 SBSE Principle
153(1)
12.3 SBSE Steps
154(1)
12.3.1 Extraction Procedure
154(1)
12.3.2 Desorption
154(1)
12.3.2.1 Thermal Desorption
154(1)
12.3.2.2 Liquid Desorption
155(1)
12.4 Derivatization
155(1)
12.4.1 In Situ Derivatization
155(1)
12.4.2 On-Stir-Bar Derivatization
155(1)
12.4.3 Post-Extraction Mode
156(1)
12.5 Coating Materials
156(2)
12.6 Applications
158(3)
12.7 Summary
161(1)
References
161(2)
13 Monolithic Spin Column Extraction in LC-MS Bioanalysis
163(11)
Akira Namera
Takeshi Saito
13.1 Introduction
163(1)
13.2 History of Monoliths
163(1)
13.3 The Use of Monolith as Sorbent in Solid-Phase Extraction
164(1)
13.4 Monolithic Spin Column for Sample Preparation
165(6)
13.4.1 Extraction Procedure
165(1)
13.4.2 Extraction Mechanism
165(2)
13.4.3 Advantages and Limitations
167(1)
13.4.3.1 Zero Dead Volume
167(1)
13.4.3.2 No Channeling
167(1)
13.4.3.3 Ease of Operation
167(1)
13.4.3.4 Ease of Shape Modification
167(1)
13.4.3.5 Loading Sample Volume
167(1)
13.4.3.6 High Viscosity Sample
168(1)
13.4.3.7 Commercial Suppliers
168(1)
13.4.4 Applications
168(3)
References
171(3)
14 Aptamer-based Sample Preparation in LC-MS Bioanalysis
174(14)
Fuyou Du
Zongyu Wei
Qiulian Zeng
Guihua Ruan
14.1 Introduction
174(1)
14.2 Aptamer-based Sample Preparation
175(6)
14.2.1 Aptamer-based Solid-phase Extraction
175(1)
14.2.1.1 Aptamer-based Affinity Columns for SPE
175(1)
14.2.1.2 Aptamer-based Magnetic SPE
175(1)
14.2.1.3 Aptamer-based Surface Affinity SPE
178(1)
14.2.1.4 Aptamer-functionalized Materials for Other SPE Format
178(3)
14.2.2 Aptamer-based Solid-phase Microextraction
181(1)
14.2.3 Aptamer-based Microfluidic Sample Preparation
181(1)
14.3 Representative Protocols
181(4)
14.4 Summary
185(1)
Acknowledgements
185(1)
References
185(3)
15 Sample Extraction via Electromembrane in LC-MS Bioanalysis
188(13)
Maria Ramos-Payan
Rut Fernandez-Torres
Miguel Angel Bello-Lopez
15.1 Introduction
188(2)
15.2 Factors Affecting the Extraction Efficiency of EME
190(1)
15.2.1 Composition of Supported Liquid Membrane and Nature of the Supports
190(1)
15.2.2 Composition of Acceptor and Donor (Sample) Phase
190(1)
15.2.2.1 For Extraction of Basic Drugs
190(1)
15.2.2.2 For Extraction of Acidic Drugs
190(1)
15.2.3 Electrical Field Application: Voltage and Time
191(1)
15.2.4 Agitation/Stirring Speed
191(1)
15.2.5 Presence of Salt/Salt Effect
191(1)
15.2.6 Temperature
191(1)
15.3 Recent Developments in EME
191(2)
15.3.1 On-chip EME
191(1)
15.3.2 Low-voltage EME
192(1)
15.3.3 Drop-to-drop EME
192(1)
15.3.4 Pulsed EME
192(1)
15.3.5 EME Combined with Other Preparation Techniques
193(1)
15.4 Bioanalytical Applications
193(4)
15.4.1 Drug Analysis
193(3)
15.4.2 Biomolecule Analysis
196(1)
15.5 Summary
197(1)
References
197(4)
Part II: Matrix-specific Sample Preparation Techniques in LC-MS Bioanalysis 201(48)
16 Tissue Sample Preparation in LC-MS Bioanalysis
203(14)
Hong Gao
John Williams
16.1 Introduction
203(1)
16.2 Selection of Homogenization Method
203(6)
16.2.1 Tissue Properties
203(1)
16.2.2 Homogenization Techniques
204(1)
16.2.2.1 Rotor-Stator Homogenization
204(1)
16.2.2.2 Bead Beating
206(1)
16.2.2.3 Ultrasonic Tissue Disruption
208(1)
16.2.2.4 Chemical Digestion
208(1)
16.2.2.5 Enzymatic Digestion
208(1)
16.3 Common Protocols
209(1)
16.3.1 For Soft Tissue
209(1)
16.3.2 For Fibrous (Tough) Tissue
209(1)
16.3.3 For Hard Tissue
209(1)
16.4 Protocols for Special Tissue Sample Preparation
210(2)
16.4.1 Hair
210(1)
16.4.2 Nail
210(1)
16.4.3 Skin
211(1)
16.4.4 Bone
211(1)
16.5 Challenges Associated with Tissue Homogenization
212(2)
16.5.1 Foaming
212(1)
16.5.2 Homogenization of Tissue for the Analysis of Labile Analyte
212(1)
16.5.3 Analyte Recovery
212(1)
16.5.4 Protein Binding
212(1)
16.5.5 Analyte Extraction
212(2)
16.6 Summary
214(1)
References
214(3)
17 Sample Preparation for LC-MS Bioanalysis of Peripheral Blood Mononuclear Cells
217(8)
Yunlin Fu
Wenkui Li
17.1 Introduction
217(1)
17.2 Peripheral Blood Mononuclear Cells (PBMCs)
217(1)
17.3 Sample Preparation Workflow for LC-MS Bioanalysis of PBMC Samples
217(3)
17.3.1 Cell Separation
217(1)
17.3.1.1 Ficoll®/Histopaque® Method
218(1)
17.3.1.2 Cell Preparation Tube (CPT) Method
218(1)
17.3.1.3 Factors That Need to Be Considered in Cell Separation
219(1)
17.3.2 Cell Counting and Recovery
219(1)
17.3.3 Cellular Volume for Concentration Conversion
220(1)
17.3.4 Cell Lysis and Extraction
220(1)
17.4 Representative Protocols
220(2)
17.4.1 Ficoll®-Paque® Plus Density Gradient Separation Method
220(1)
17.4.2 CPT Method
221(1)
17.4.3 Additional Consideration in LC-MS Bioanalysis for PBMC Samples
221(1)
17.4.3.1 Matrix Blank
221(1)
17.4.3.2 STDs and QCs
222(1)
17.5 Summary
222(1)
References
222(3)
18 Sample Preparation for LC-MS Bioanalysis of Urine, Cerebrospinal Fluid, Synovial Fluid, Sweat, Tears, and Aqueous Humor Samples
225(13)
Allena J. Ji
18.1 Introduction
225(1)
18.2 Sample Preparation Methods for Urine
225(5)
18.2.1 Direct Dilution for Urine Samples
225(1)
18.2.2 Liquid-Liquid Extraction for Urine Samples
226(1)
18.2.3 Solid-Phase Extraction for Urine Samples
226(4)
18.3 Sample Preparation Methods for Cerebrospinal Fluid
230(1)
18.4 Sample Preparation Methods for Synovial Fluid
231(1)
18.5 Sample Preparation Methods for Sweat
231(3)
18.6 Sample Preparation Methods for Tears
234(2)
18.7 Sample Preparation Methods for Aqueous Humor
236(1)
18.8 Summary
236(1)
References
236(2)
19 Sample Preparation for LC-MS Bioanalysis of Liposomal Samples
238(11)
Wenying Jian, Rao N.V.S. Mamidi, Naidong Weng
19.1 Introduction
238(1)
19.2 Major Types of Sample Extraction Techniques for Liposomal Samples
239(3)
19.2.1 Solid-Phase Extraction
239(2)
19.2.2 Ultrafiltration
241(1)
19.2.3 Ultracentrifugation
241(1)
19.2.4 Other Methods
242(1)
19.3 Key Considerations in Sample Preparation for Liposomal Samples
242(3)
19.3.1 Stability
242(1)
19.3.2 Protein Binding
243(1)
19.3.3 Quality Control Samples
243(1)
19.3.4 Matrix Effect
244(1)
19.3.5 Addition of Internal Standard
244(1)
19.4 Typical Protocols
245(1)
19.4.1 SPE Procedure for Measurement of Nonencapsulated and Encapsulated Analyte in Liposomal Samples
245(1)
19.4.2 Ultrafiltration Procedure for Measurement of Nonencapsulated Analyte in Liposomal Samples
245(1)
19.4.3 Protein Precipitation Procedure for Measurement of Total Analyte in Liposomal Samples
246(1)
19.5 Summary
246(1)
References
246(3)
Part III: Sample Preparation Techniques for LC-MS Bioanalysis of Challenging Molecules 249(102)
20 Key Pre-analytical Considerations in LC-MS Bioanalysis
251(9)
Fumin Li, B®uce J. Hidy, Rand G. Jenkins
20.1 Introduction
251(1)
20.2 The Pre-analytical Phase
251(2)
20.3 Bioanalytical Evaluation-planning
253(2)
20.3.1 Study-related Considerations
253(1)
20.3.1.1 Study Type and Development Phase
253(1)
20.3.1.2 Study Subject Population
253(1)
20.3.1.3 Drug and Administration
254(1)
20.3.1.4 Samples to Be Collected for Analysis
254(1)
20.3.1.5 Analyte(s) to Be Measured
254(1)
20.3.1.6 Other Aspects
254(1)
20.3.2 Assay-related Considerations
254(1)
20.3.2.1 Analyte(s) and Properties-Small vs. Large Molecule
254(1)
20.3.2.2 Matrix and Species
255(1)
20.4 Common Pre-analytical Issues in LC-MS Bioanalysis
255(3)
20.4.1 Stability in Matrix
255(2)
20.4.2 Nonspecific Binding
257(1)
20.5 Summary
258(1)
References
259(1)
21 Derivatization in Sample Preparation for LC-MS Bioanalysis
260(15)
Dafang Zhong
Yunting Zhu
21.1 Introduction
260(1)
21.2 Derivatization Strategies
260(4)
21.3 Key Considerations for Derivatization
264(1)
21.4 Application of Derivatization for Quantitative LC-MS Bioanalysis
265(5)
21.4.1 Derivatization for Quantitative LC-MS Bioanalysis of Prasugrel
266(1)
21.4.1.1 Stability of Prasugrel Derivative
266(1)
21.4.1.2 Step-by-step Procedure of Derivatization
266(1)
21.4.1.3 LC-MS Behavior of Prasugrel Derivative
267(1)
21.4.2 Derivatization for Quantitative LC-MS Bioanalysis of Minodronic Acid
268(1)
21.4.2.1 Step-by-step Procedure of Derivatization
268(1)
21.4.2.2 LC-MS Behavior of MA Derivative
268(1)
21.4.2.3 Key Consideration for MA Derivatization
269(1)
21.4.3 Derivatization for Quanti tative LC-MS Bioanalysis of α-Fluoro-β-alanine, 5-Fluorouracil, and Capecitabine
269(1)
21.4.3.1 Step-by-step Procedure of Derivatization
270(1)
21.4.3.2 LC-MS Behavior of DNS-Cl Derivatives
270(1)
21.5 Summary
270(1)
References
271(4)
22 Sample Preparation for LC-MS Bioanalysis of Lipids
275(9)
Samuel Hofbauer
Ashkan Salamatipour
Ian A. Blair
Clementina Mesaros
22.1 Introduction
275(1)
22.2 Sample Preparation for LC-MS Bioanalysis of Lipids
275(5)
22.2.1 LC-MS Bioanalysis of Lipids
275(2)
22.2.2 Sample Preparation for LC-MS Bioanalysis of Lipids
277(1)
22.2.2.1 Key Considerations for LC-MS Bioanalysis of Lipids
277(1)
22.2.2.2 Common Sample Preparation Methods for Lipids
277(1)
22.2.2.3 Derivatization
278(1)
22.2.3 Typical Protocols of Sample Extraction for Lipid LC-MS Bioanalysis
279(1)
22.2.3.1 A Typical Protocol of Folch LLE
279(1)
22.2.3.2 A Typical Protocol of LLE
279(1)
22.2.3.3 A Typical Protocol of SPE
280(1)
22.2.3.4 A Typical Protocol of LLE with Derivatization
280(1)
22.3 Case Studies of LC-MS Bioanalysis of Lipids
280(1)
22.3.1 Targeted LC-MS/MS Analysis of Lipid Metabolites Involved in Inflammation
280(1)
22.3.2 LC-ECAPCl/MS Analysis of Bioactive Eicosanoid Lipids
281(1)
22.4 Summary
281(1)
References
282(2)
23 Sample Preparation for LC-MS Bioanalysis of Peptides
284(20)
Long Yuan
23.1 Introduction
284(1)
23.2 Properties of Peptides and Sample Pretreatment
285(2)
23.2.1 Stability
286(1)
23.2.2 Adsorption
286(1)
23.3 Sample Preparation Strategies
287(9)
23.3.1 Protein Precipitation
287(1)
23.3.1.1 Overview of Protein Precipitation
287(1)
23.3.1.2 PPT in Peptide Bioanalysis
287(1)
23.3.1.3 A Representative PPT Protocol
288(1)
23.3.2 Liquid-Liquid Extraction
288(1)
23.3.2.1 Overview of LLE
288(1)
23.3.2.2 LLE in Peptide Bioanalysis
288(1)
23.3.2.3 A Representative LLE Protocol
289(1)
23.3.2.4 Salting-out Assisted LLE
289(1)
23.3.2.5 A Representative SALLE Protocol
290(1)
23.3.3 Solid-Phase Extraction
290(1)
23.3.3.1 Overview of SPE
290(1)
23.3.3.2 SPE in Peptide Bioanalysis
290(1)
23.3.3.3 A Representative SPE Protocol
291(1)
23.3.3.4 Online SPE
291(1)
23.3.4 Immunoaffinity Extraction
292(1)
23.3.4.1 Overview of Immunoaffinity Extraction
292(1)
23.3.4.2 IAE in Peptide Bioanalysis
292(1)
23.3.4.3 A Representative IAE Protocol
294(1)
23.3.5 Other Sample Preparation Techniques for Peptides
294(1)
23.3.5.1 Immobilized Metal Ion Affinity Chromatography
294(1)
23.3.5.2 Molecularly Imprinted Polymers
295(1)
23.3.5.3 Ultrafiltration
295(1)
23.3.5.4 Derivatization
295(1)
23.3.5.5 Digestion
296(1)
23.4 Conclusions
296(1)
Acknowledgements
297(1)
References
297(7)
24 Sample Preparation for LC-MS Bioanalysis of Proteins
304(15)
Nico van de Merbel
24.1 Introduction
304(1)
24.2 Intact Versus Digested Protein Analysis
305(1)
24.3 Enzymatic Digestion
306(2)
24.4 Protein Depletion
308(1)
24.5 Protein Extraction (Before Digestion)
308(4)
24.5.1 Differential Protein Precipitation
308(1)
24.5.2 Immunocapture
309(2)
24.5.3 Antibody-free Extraction
311(1)
24.6 Peptide Extraction (After Digestion)
312(2)
24.6.1 Immunocapture
312(1)
24.6.2 Antibody-Free Extraction
313(1)
24.7 Combined Protein and Peptide Extraction
314(1)
24.8 Summary
314(1)
References
315(4)
25 Sample Preparation for LC-MS Bioanalysis of Oligonucleotides
319(16)
Michael G. Bartlett
Jaeah Kim
Babak Basiri
Ning Li
25.1 Introduction
319(1)
25.2 Properties of Oligonucleotides and Associated Challenges in LC-MS Bioanalysis
319(3)
25.3 Classes of Oligonucleotides
322(1)
25.4 Major Types of Sample Extraction Techniques
323(4)
25.4.1 Liquid-Liquid Extraction
323(1)
25.4.2 Proteinase K Digestion
323(2)
25.4.3 Solid-phase Extraction
325(1)
25.4.4 Ion-exchange Magnetic Bead Extraction
325(1)
25.4.5 Immunoaffinity Capture Extraction
326(1)
25.4.6 Preparative Chromatography
327(1)
25.5 Key Considerations in Sample Preparation for LC-MS Bioanalysis of Oligonucleotides
327(1)
25.6 Representative Protocols
328(2)
25.6.1 Quantitation of a Therapeutic Antisense Oligonucleotide from Plasma
328(1)
25.6.2 Targeted LC-MS of Cellular Messenger RNA
329(1)
25.7 Summary
330(1)
References
330(5)
26 Sample Preparation for LC-MS Bioanalysis of Antibody-Drug Conjugates
335(16)
Cong Wei
Ragu Ramanathan
26.1 Introduction
335(1)
26.2 Properties of ADC and Challenges for Sample Preparation
335(7)
26.2.1 Unconjugated Payload
336(1)
26.2.2 Conjugated Payload
337(1)
26.2.3 Conjugated Ab
338(1)
26.2.4 Total Ab
339(1)
26.2.5 DAR of ADC
340(2)
26.3 Sample Preparation Methods and Common Protocols
342(5)
26.3.1 Unconjugated Payload
342(1)
26.3.1.1 Sample Preparation by Protein Precipitation
342(1)
26.3.1.2 Sample Preparation by SPE
342(1)
26.3.1.3 Sample Preparation by LLE
343(1)
26.3.1.4 Sample Preparation by SLE
343(1)
26.3.1.5 Preparation of Samples with Tissues
344(1)
26.3.2 Conjugated Payload
344(1)
26.3.2.1 Sample Preparation Using Anti-idiotype mAb or Anti-human Fc Ab for Immunoaffinity Capture
344(1)
26.3.2.2 Sample Preparation Using Protein A or Protein G for Capture
345(1)
26.3.2.3 Sample Preparation for Conjugated Payload Quantification in ADCs with Non-cleavable Linkers
346(1)
26.3.3 Conjugated Ab
346(1)
26.3.4 Total Ab
346(1)
26.3.5 DAR of ADC
347(1)
26.3.5.1 Sample Preparation for DAR Analysis on Intact ADC
347(1)
26.3.5.2 Sample Preparation for DAR Analysis on Reduced ADC
347(1)
26.4 Future Perspective
347(1)
Acknowledgements
348(1)
References
348(3)
Index 351
WENKUI LI is a Senior Fellow at the Novartis Institutes for BioMedical Research Pharmacokinetic Sciences. He serves on the Editorial Board of Biomedical Chromatography.

WENYING JIAN is a Senior Principal Scientist in Janssen Research and Development at the Johnson & Johnson Company. She serves on the Editorial Board of Journal of Pharmacological and Toxicological Methods.

YUNLIN FU is an Investigator at the Novartis Institutes for BioMedical Research Pharmacokinetic Sciences.