Muutke küpsiste eelistusi

E-raamat: Sampling in Combinatorial and Geometric Set Systems

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 165,75 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Understanding the behavior of basic sampling techniques and intrinsic geometric attributes of data is an invaluable skill that is in high demand for both graduate students and researchers in mathematics, machine learning, and theoretical computer science. The last ten years have seen significant progress in this area, with many open problems having been resolved during this time. These include optimal lower bounds for epsilon-nets for many geometric set systems, the use of shallow-cell complexity to unify proofs, simpler and more efficient algorithms, and the use of epsilon-approximations for construction of coresets, to name a few. This book presents a thorough treatment of these probabilistic, combinatorial, and geometric methods, as well as their combinatorial and algorithmic applications. It also revisits classical results, but with new and more elegant proofs. While mathematical maturity will certainly help in appreciating the ideas presented here, only a basic familiarity with discrete mathematics, probability, and combinatorics is required to understand the material.
Preface ix
Background xiii
Chapter 1 A Probabilistic Averaging Technique
1(20)
1 Level Sets
4(7)
2 Concentration Bounds for Sums of Bernoulli Variables
11(10)
Chapter 2 First Constructions of Epsilon-Nets
21(16)
1 Deterministic
23(3)
2 Probabilistic
26(5)
3 Improved Probabilistic Analysis
31(6)
Chapter 3 Refining Random Samples
37(20)
1 Linear-sized Nets for Disks in R2
39(5)
2 Partitioning Segments in R2
44(8)
3 Application: Forbidden Subgraphs
52(5)
Chapter 4 Complexity of Set Systems
57(18)
1 VC-dimension
60(7)
2 Shallow-cell Complexity
67(8)
Chapter 5 Packings of Set Systems
75(14)
1 Packing Half-Spaces in Rd
77(3)
2 A Packing Theorem for Combinatorial Set Systems
80(5)
3 Applications of the Packing Theorem
85(4)
Chapter 6 Epsilon-Nets: Combinatorial Bounds
89(12)
1 A First Bound using Ghost Sampling
91(5)
2 Optimal e-Nets using Packings
96(5)
Chapter 7 Epsilon-Nets: An Algorithm
101(12)
1 Special Case: Linear-sized Nets
103(5)
2 General Case
108(5)
Chapter 8 Epsilon-Nets: Weighted Case
113(18)
1 Special Case: Linear-sized Nets
115(6)
2 General Case
121(7)
3 Application: Rounding Linear Programs
128(3)
Chapter 9 Epsilon-Nets: Convex Sets
131(12)
1 Weak e-nets
132(6)
2 Application: Polytope Approximation
138(5)
Chapter 10 VC-dimension of K-Fold Unions: Basic Case
143(14)
1 Abstract Set Systems
145(5)
2 Axis-Aligned Rectangles in R2
150(7)
Chapter 11 VC-dimension of K-Fold Unions: General Case
157(14)
1 Products of Set Systems
158(4)
2 Geometric Set Systems in Rd
162(5)
3 Lower bounds on Epsilon-Nets
167(4)
Chapter 12 Epsilon-Approximations: First Bounds
171(14)
1 Proof using Induction
174(4)
2 Proof using Discrepancy
178(7)
Chapter 13 Epsilon-Approximations: Improved Bounds
185(14)
1 Improved Analysis via Chaining
186(7)
2 Near-Optimal Bounds via Partitioning
193(6)
Chapter 14 Epsilon-Approximations: Relative Case
199(14)
1 Relative and Sensitive Approximations
202(6)
2 Improved Bounds for Relative Approximations
208(5)
Chapter 15 Epsilon-Approximations: Functional Case
213(14)
1 A Functional View of Approximations
216(4)
2 Application: Sensitivity and Coresets for Clustering
220(7)
Chapter 16 A Summary of Known Bounds
227(14)
1 LIST: Complexity of Geometric Set Systems
228(5)
2 LIST: Epsilon-Nets
233(3)
3 LIST: Epsilon-Approximations
236(5)
Bibliography 241(6)
Index 247
Nabil H. Mustafa, ESIEE Paris, Marne-la-Vallee, France.