Preface |
|
xvii | |
List of abbreviations |
|
xxiv | |
1 Introduction |
|
1 | (8) |
|
|
2 | (3) |
|
1.2 Beyond bandlimited signals |
|
|
5 | (1) |
|
|
6 | (3) |
2 Introduction to linear algebra |
|
9 | (58) |
|
2.1 Signal expansions: some examples |
|
|
9 | (4) |
|
|
13 | (2) |
|
|
13 | (1) |
|
2.2.2 Properties of subspaces |
|
|
14 | (1) |
|
|
15 | (6) |
|
|
16 | (1) |
|
|
17 | (2) |
|
2.3.3 Calculus in inner product spaces |
|
|
19 | (1) |
|
|
20 | (1) |
|
2.4 Linear transformations |
|
|
21 | (11) |
|
2.4.1 Subspaces associated with a linear transformation |
|
|
22 | (2) |
|
|
24 | (1) |
|
2.4.3 Direct-sum decompositions |
|
|
25 | (4) |
|
|
29 | (3) |
|
|
32 | (12) |
|
2.5.1 Set transformations |
|
|
33 | (2) |
|
|
35 | (1) |
|
|
36 | (4) |
|
2.5.4 Riesz basis expansions |
|
|
40 | (4) |
|
|
44 | (7) |
|
2.6.1 Orthogonal projection operators |
|
|
46 | (2) |
|
2.6.2 Oblique projection operators |
|
|
48 | (3) |
|
2.7 Pseudoinverse of a transformation |
|
|
51 | (4) |
|
2.7.1 Definition and properties |
|
|
52 | (2) |
|
|
54 | (1) |
|
|
55 | (8) |
|
2.8.1 Definition of frames |
|
|
56 | (2) |
|
|
58 | (1) |
|
|
59 | (4) |
|
|
63 | (4) |
3 Fourier analysis |
|
67 | (28) |
|
3.1 Linear time-invariant systems |
|
|
68 | (7) |
|
3.1.1 Linearity and time-invariance |
|
|
68 | (3) |
|
3.1.2 The impulse response |
|
|
71 | (2) |
|
3.1.3 Causality and stability |
|
|
73 | (2) |
|
3.1.4 Eigenfunctions of LTI systems |
|
|
75 | (1) |
|
3.2 The continuous-time Fourier transform |
|
|
75 | (5) |
|
3.2.1 Definition of the CTFT |
|
|
75 | (1) |
|
3.2.2 Properties of the CTFT |
|
|
76 | (1) |
|
3.2.3 Examples of the CTFT |
|
|
77 | (2) |
|
|
79 | (1) |
|
3.3 Discrete-time systems |
|
|
80 | (5) |
|
3.3.1 Discrete-time impulse response |
|
|
80 | (1) |
|
3.3.2 Discrete-time Fourier transform |
|
|
81 | (1) |
|
3.3.3 Properties of the DTFT |
|
|
82 | (3) |
|
3.4 Continuous—discrete representations |
|
|
85 | (5) |
|
3.4.1 Poisson-sum formula |
|
|
87 | (1) |
|
3.4.2 Sampled correlation sequences |
|
|
88 | (2) |
|
|
90 | (5) |
4 Signal spaces |
|
95 | (51) |
|
|
95 | (3) |
|
4.1.1 Sampling and reconstruction spaces |
|
|
95 | (1) |
|
4.1.2 Practical sampling theorems |
|
|
96 | (2) |
|
|
98 | (12) |
|
4.2.1 The Shannon—Nyquist theorem |
|
|
98 | (2) |
|
4.2.2 Sampling by modulation |
|
|
100 | (2) |
|
|
102 | (3) |
|
4.2.4 Orthonormal basis interpretation |
|
|
105 | (4) |
|
4.2.5 Towards more general sampling spaces |
|
|
109 | (1) |
|
4.3 Sampling in shift-invariant spaces |
|
|
110 | (12) |
|
4.3.1 Shift-invariant spaces |
|
|
110 | (2) |
|
|
112 | (2) |
|
4.3.3 Digital communication signals |
|
|
114 | (3) |
|
4.3.4 Multiple generators |
|
|
117 | (4) |
|
4.3.5 Refinable functions |
|
|
121 | (1) |
|
4.4 Gabor and wavelet expansions |
|
|
122 | (10) |
|
|
122 | (4) |
|
|
126 | (6) |
|
|
132 | (6) |
|
|
133 | (3) |
|
|
136 | (2) |
|
4.6 Stochastic and smoothness priors |
|
|
138 | (4) |
|
|
142 | (4) |
5 Shift-invariant spaces |
|
146 | (32) |
|
5.1 Riesz basis in SI spaces |
|
|
146 | (6) |
|
5.1.1 Riesz basis condition |
|
|
147 | (2) |
|
|
149 | (3) |
|
5.2 Riesz basis expansions |
|
|
152 | (9) |
|
|
152 | (3) |
|
5.2.2 Expansion coefficients |
|
|
155 | (1) |
|
5.2.3 Alternative basis expansions |
|
|
156 | (5) |
|
|
161 | (2) |
|
5.4 Redundant sampling in SI spaces |
|
|
163 | (6) |
|
5.4.1 Redundant bandlimited sampling |
|
|
165 | (3) |
|
|
168 | (1) |
|
|
169 | (6) |
|
|
170 | (1) |
|
|
171 | (4) |
|
|
175 | (3) |
6 Subspace priors |
|
178 | (60) |
|
6.1 Sampling and reconstruction processes |
|
|
178 | (8) |
|
|
178 | (1) |
|
|
179 | (2) |
|
6.1.3 Unconstrained recovery |
|
|
181 | (1) |
|
6.1.4 Predefined recovery kernel |
|
|
182 | (1) |
|
|
183 | (3) |
|
6.2 Unconstrained reconstruction |
|
|
186 | (5) |
|
6.2.1 Geometric interpretation |
|
|
186 | (2) |
|
6.2.2 Equal sampling and prior spaces |
|
|
188 | (3) |
|
6.3 Sampling in general spaces |
|
|
191 | (14) |
|
6.3.1 The direct-sum condition |
|
|
192 | (2) |
|
|
194 | (4) |
|
6.3.3 Computing the oblique projection operator |
|
|
198 | (4) |
|
6.3.4 Oblique biorthogonal basis |
|
|
202 | (3) |
|
6.4 Summary: unique unconstrained recovery |
|
|
205 | (6) |
|
6.4.1 Consistent recovery |
|
|
205 | (3) |
|
|
208 | (3) |
|
|
211 | (4) |
|
6.5.1 Least squares recovery |
|
|
211 | (2) |
|
|
213 | (2) |
|
|
215 | (9) |
|
6.6.1 Minimal-error recovery |
|
|
216 | (3) |
|
6.6.2 Least squares recovery |
|
|
219 | (3) |
|
|
222 | (2) |
|
6.7 Unified formulation of recovery techniques |
|
|
224 | (2) |
|
6.8 Multichannel sampling |
|
|
226 | (9) |
|
|
226 | (1) |
|
6.8.2 Papoulis' generalized sampling |
|
|
227 | (8) |
|
|
235 | (3) |
7 Smoothness priors |
|
238 | (46) |
|
7.1 Unconstrained recovery |
|
|
238 | (11) |
|
|
238 | (1) |
|
7.1.2 Least squares solution |
|
|
239 | (3) |
|
|
242 | (1) |
|
|
243 | (4) |
|
7.1.5 Multichannel sampling |
|
|
247 | (2) |
|
|
249 | (10) |
|
7.2.1 Least squares solution |
|
|
249 | (2) |
|
7.2.2 Minimax-regret solution |
|
|
251 | (5) |
|
7.2.3 Comparison between least squares and minimax |
|
|
256 | (3) |
|
|
259 | (6) |
|
7.3.1 The hybrid Wiener filter |
|
|
261 | (2) |
|
7.3.2 Constrained reconstruction |
|
|
263 | (2) |
|
7.4 Summary of sampling methods |
|
|
265 | (4) |
|
|
265 | (3) |
|
|
268 | (1) |
|
|
269 | (12) |
|
7.5.1 Constrained reconstruction problem |
|
|
270 | (2) |
|
7.5.2 Least squares solution |
|
|
272 | (1) |
|
7.5.3 Regularized least squares |
|
|
273 | (1) |
|
7.5.4 Minimax MSE filters |
|
|
273 | (2) |
|
7.5.5 Hybrid Wiener filter |
|
|
275 | (1) |
|
7.5.6 Summary of the different filters |
|
|
275 | (2) |
|
7.5.7 Bandlimited interpolation |
|
|
277 | (2) |
|
7.5.8 Unconstrained recovery |
|
|
279 | (2) |
|
|
281 | (3) |
8 Nonlinear sampling |
|
284 | (41) |
|
8.1 Sampling with nonlinearities |
|
|
285 | (3) |
|
|
285 | (1) |
|
8.1.2 Wiener—Hammerstein systems |
|
|
286 | (2) |
|
|
288 | (6) |
|
8.2.1 Bandlimited signals |
|
|
288 | (2) |
|
8.2.2 Reproducing kernel Hilbert spaces |
|
|
290 | (4) |
|
8.3 Subspace-preserving nonlinearities |
|
|
294 | (1) |
|
8.4 Equal prior and sampling spaces |
|
|
295 | (17) |
|
|
297 | (5) |
|
8.4.2 Linearization approach |
|
|
302 | (3) |
|
8.4.3 Conditions for invertibility |
|
|
305 | (1) |
|
|
306 | (4) |
|
8.4.5 Comparison between algorithms |
|
|
310 | (2) |
|
8.5 Arbitrary sampling filters |
|
|
312 | (10) |
|
8.5.1 Recovery algorithms |
|
|
312 | (2) |
|
8.5.2 Uniqueness conditions |
|
|
314 | (3) |
|
8.5.3 Algorithm convergence |
|
|
317 | (2) |
|
|
319 | (3) |
|
|
322 | (3) |
9 Resampling |
|
325 | (45) |
|
9.1 Bandlimited sampling rate conversion |
|
|
326 | (11) |
|
9.1.1 Interpolation by an integer factor I |
|
|
327 | (2) |
|
9.1.2 Decimation by an integer factor D |
|
|
329 | (3) |
|
9.1.3 Rate conversion by a rational factor I/D |
|
|
332 | (2) |
|
9.1.4 Rate conversion by arbitrary factors |
|
|
334 | (3) |
|
|
337 | (4) |
|
9.2.1 Interpolation formula |
|
|
337 | (3) |
|
9.2.2 Comparison with bandlimited interpolation |
|
|
340 | (1) |
|
9.3 Dense-grid interpolation |
|
|
341 | (9) |
|
|
342 | (6) |
|
|
348 | (1) |
|
|
349 | (1) |
|
9.4 Projection-based resampling |
|
|
350 | (15) |
|
9.4.1 Orthogonal projection resampling |
|
|
351 | (6) |
|
9.4.2 Oblique projection resampling |
|
|
357 | (8) |
|
9.5 Summary of conversion methods |
|
|
365 | (1) |
|
9.5.1 Computational aspects |
|
|
365 | (1) |
|
9.5.2 Anti-aliasing aspects |
|
|
366 | (1) |
|
|
366 | (4) |
10 Union of subspaces |
|
370 | (22) |
|
|
371 | (4) |
|
10.1.1 Multiband sampling |
|
|
371 | (2) |
|
10.1.2 Time-delay estimation |
|
|
373 | (2) |
|
|
375 | (7) |
|
10.2.1 Definition and properties |
|
|
375 | (3) |
|
|
378 | (4) |
|
10.3 Sampling over unions |
|
|
382 | (7) |
|
10.3.1 Unique and stable sampling |
|
|
382 | (4) |
|
|
386 | (1) |
|
10.3.3 Xampling: compressed sampling methods |
|
|
387 | (2) |
|
|
389 | (3) |
11 Compressed sensing |
|
392 | (83) |
|
11.1 Motivation for compressed sensing |
|
|
392 | (2) |
|
|
394 | (9) |
|
11.2.1 Normed vector spaces |
|
|
395 | (2) |
|
11.2.2 Sparse signal models |
|
|
397 | (6) |
|
11.2.3 Low-rank matrix models |
|
|
403 | (1) |
|
|
403 | (28) |
|
11.3.1 Null space conditions |
|
|
404 | (6) |
|
11.3.2 The restricted isometry property |
|
|
410 | (7) |
|
|
417 | (5) |
|
11.3.4 Uncertainty relations |
|
|
422 | (6) |
|
11.3.5 Sensing matrix constructions |
|
|
428 | (3) |
|
|
431 | (11) |
|
|
432 | (4) |
|
|
436 | (4) |
|
11.4.3 Combinatorial algorithms |
|
|
440 | (1) |
|
11.4.4 Analysis versus synthesis methods |
|
|
441 | (1) |
|
|
442 | (15) |
|
11.5.1 l1 recovery: RIP-based results |
|
|
443 | (7) |
|
11.5.2 l1 recovery: coherence-based results |
|
|
450 | (1) |
|
11.5.3 Instance-optimal guarantees |
|
|
451 | (2) |
|
11.5.4 The cross-polytope and phase transitions |
|
|
453 | (2) |
|
11.5.5 Guarantees on greedy methods |
|
|
455 | (2) |
|
11.6 Multiple measurement vectors |
|
|
457 | (13) |
|
|
457 | (2) |
|
11.6.2 Recovery algorithms |
|
|
459 | (6) |
|
11.6.3 Performance guarantees |
|
|
465 | (1) |
|
11.6.4 Infinite measurement vectors |
|
|
466 | (4) |
|
11.7 Summary and extensions |
|
|
470 | (1) |
|
|
471 | (4) |
12 Sampling over finite unions |
|
475 | (64) |
|
|
475 | (7) |
|
|
475 | (3) |
|
12.1.2 Problem formulation |
|
|
478 | (1) |
|
12.1.3 Connection with block sparsity |
|
|
479 | (3) |
|
12.2 Uniqueness and stability |
|
|
482 | (6) |
|
|
483 | (2) |
|
12.2.2 Block coherence and subcoherence |
|
|
485 | (3) |
|
12.3 Signal recovery algorithms |
|
|
488 | (5) |
|
12.3.1 Exponential recovery algorithm |
|
|
488 | (1) |
|
12.3.2 Convex recovery algorithm |
|
|
489 | (1) |
|
|
490 | (3) |
|
12.4 RIP-based recovery results |
|
|
493 | (7) |
|
12.4.1 Block basis pursuit recovery |
|
|
493 | (6) |
|
12.4.2 Random matrices and block RIP |
|
|
499 | (1) |
|
12.5 Coherence-based recovery results |
|
|
500 | (13) |
|
12.5.1 Recovery conditions |
|
|
500 | (4) |
|
|
504 | (3) |
|
12.5.3 Proofs of theorems |
|
|
507 | (6) |
|
12.6 Dictionary and subspace learning |
|
|
513 | (9) |
|
12.6.1 Dictionary learning |
|
|
514 | (3) |
|
|
517 | (5) |
|
12.7 Blind compressed sensing |
|
|
522 | (12) |
|
12.7.1 BCS problem formulation |
|
|
522 | (1) |
|
12.7.2 BCS with a constrained dictionary |
|
|
523 | (8) |
|
12.7.3 BCS with multiple measurement matrices |
|
|
531 | (3) |
|
|
534 | (5) |
13 Sampling over shift-invariant unions |
|
539 | (35) |
|
|
539 | (4) |
|
13.1.1 Sparse union of SI subspaces |
|
|
539 | (2) |
|
13.1.2 Sub-Nyquist sampling |
|
|
541 | (2) |
|
13.2 Compressed sensing in sparse unions |
|
|
543 | (10) |
|
13.2.1 Union of discrete sequences |
|
|
543 | (2) |
|
13.2.2 Reduced-rate sampling |
|
|
545 | (8) |
|
13.3 Application to detection |
|
|
553 | (10) |
|
13.3.1 Matched-filter receiver |
|
|
554 | (2) |
|
13.3.2 Maximum-likelihood detector |
|
|
556 | (1) |
|
13.3.3 Compressed-sensing receiver |
|
|
557 | (6) |
|
|
563 | (8) |
|
13.4.1 Conventional multiuser detectors |
|
|
564 | (1) |
|
13.4.2 Reduced-dimension MUD (RD-MUD) |
|
|
565 | (3) |
|
13.4.3 Performance of RD-MUD |
|
|
568 | (3) |
|
|
571 | (3) |
14 Multiband sampling |
|
574 | (75) |
|
14.1 Sampling of multiband signals |
|
|
574 | (3) |
|
14.2 Multiband signals with known carriers |
|
|
577 | (10) |
|
|
577 | (2) |
|
|
579 | (3) |
|
14.2.3 Direct undersampling of bandpass signals |
|
|
582 | (5) |
|
|
587 | (21) |
|
|
587 | (5) |
|
14.3.2 Multiband sampling |
|
|
592 | (10) |
|
14.3.3 Universal sampling patterns |
|
|
602 | (4) |
|
14.3.4 Hardware considerations |
|
|
606 | (2) |
|
14.4 Modulated wideband converter |
|
|
608 | (16) |
|
|
610 | (1) |
|
14.4.2 MWC signal recovery |
|
|
611 | (3) |
|
14.4.3 Collapsing channels |
|
|
614 | (6) |
|
14.4.4 Sign-alternating sequences |
|
|
620 | (4) |
|
14.5 Blind sampling of multiband signals |
|
|
624 | (9) |
|
14.5.1 Minimal sampling rate |
|
|
625 | (2) |
|
|
627 | (2) |
|
14.5.3 Multicoset sampling and the sparse SI framework |
|
|
629 | (2) |
|
14.5.4 Sub-Nyquist baseband processing |
|
|
631 | (1) |
|
|
632 | (1) |
|
14.6 Hardware prototype of sub-Nyquist multiband sensing |
|
|
633 | (3) |
|
|
636 | (8) |
|
|
636 | (2) |
|
14.7.2 Sign-alternating sequences |
|
|
638 | (1) |
|
14.7.3 Effect of CTF length |
|
|
639 | (1) |
|
|
640 | (4) |
|
|
644 | (5) |
15 Finite rate of innovation sampling |
|
649 | (106) |
|
15.1 Finite rate of innovation signals |
|
|
649 | (7) |
|
15.1.1 Shift-invariant spaces |
|
|
650 | (1) |
|
|
651 | (3) |
|
|
654 | (2) |
|
15.2 Periodic pulse streams |
|
|
656 | (36) |
|
15.2.1 Time-domain formulation |
|
|
657 | (3) |
|
15.2.2 Frequency-domain formulation |
|
|
660 | (4) |
|
|
664 | (3) |
|
|
667 | (5) |
|
|
672 | (5) |
|
|
677 | (5) |
|
15.2.7 Covariance-based methods |
|
|
682 | (4) |
|
15.2.8 Compressed sensing formulation |
|
|
686 | (2) |
|
15.2.9 Sub-Nyquist sampling |
|
|
688 | (4) |
|
15.3 Sub-Nyquist sampling with a single channel |
|
|
692 | (13) |
|
|
692 | (3) |
|
15.3.2 Sum-of-sincs filter |
|
|
695 | (3) |
|
|
698 | (3) |
|
15.3.4 Finite and infinite pulse streams |
|
|
701 | (4) |
|
15.4 Multichannel sampling |
|
|
705 | (12) |
|
15.4.1 Modulation-based multichannel systems |
|
|
706 | (8) |
|
15.4.2 Filterbank sampling |
|
|
714 | (3) |
|
|
717 | (6) |
|
|
718 | (3) |
|
15.5.2 Periodic versus semiperiodic FRI signals |
|
|
721 | (2) |
|
15.5.3 Choosing the sampling kernels |
|
|
723 | (1) |
|
15.6 General FRI sampling |
|
|
723 | (10) |
|
|
724 | (1) |
|
15.6.2 Minimal sampling rate |
|
|
725 | (2) |
|
15.6.3 Least squares recovery |
|
|
727 | (1) |
|
15.6.4 Iterative recovery |
|
|
728 | (5) |
|
|
733 | (17) |
|
|
733 | (10) |
|
15.7.2 Time-varying system identification |
|
|
743 | (1) |
|
15.7.3 Ultrasound imaging |
|
|
744 | (6) |
|
|
750 | (5) |
Appendix A Finite linear algebra |
|
755 | (13) |
|
|
755 | (5) |
|
|
755 | (1) |
|
|
756 | (2) |
|
A.1.3 Special classes of matrices |
|
|
758 | (2) |
|
A.2 Eigendecomposition of matrices |
|
|
760 | (4) |
|
A.2.1 Eigenvalues and eigenvectors |
|
|
760 | (3) |
|
A.2.2 Singular value decomposition |
|
|
763 | (1) |
|
|
764 | (1) |
|
|
765 | (3) |
|
|
766 | (1) |
|
|
767 | (1) |
|
|
767 | (1) |
Appendix B Stochastic signals |
|
768 | (7) |
|
|
768 | (2) |
|
B.1.1 Probability density function |
|
|
768 | (1) |
|
B.1.2 Jointly random variables |
|
|
769 | (1) |
|
|
770 | (1) |
|
|
770 | (3) |
|
B.3.1 Continuous-time random processes |
|
|
770 | (2) |
|
B.3.2 Discrete-time random processes |
|
|
772 | (1) |
|
B.4 Sampling of bandlimited processes |
|
|
773 | (2) |
References |
|
775 | (24) |
Index |
|
799 | |