Muutke küpsiste eelistusi

E-raamat: Scattering of Particles and Radiation in Astrophysical Environments

  • Formaat: PDF+DRM
  • Sari: Springer Theses
  • Ilmumisaeg: 24-Nov-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319250793
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Springer Theses
  • Ilmumisaeg: 24-Nov-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319250793

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This thesis considers the non-equilibrium and energy transfer processes involved in the evolution of astrophysical gases and plasmas. Momentum-energy transfer in collisions of atoms, molecules and ions governs the evolution of interacting astrophysical gas and plasmas. These collisions require an accurate quantum mechanical description and the work presented here develops a unified kinetic and quantum-mechanical model for this consideration. The multi-scale computational approach implemented here takes into account non-thermal distributions of atomic particles and clarifies their role in the evolution of interstellar gas and planetary atmospheres. As shown, the physical parameters of non-thermal distributions strongly depend on the differential cross sections of atomic, molecular and ion collisions. Readers will find a detailed description of the energy relaxation of energetic atoms, produced in the interstellar gas by the solar and stellar wind plasmas. Computation of the non-thermal diffuse background of energetic helium atoms in the heliosphere is also included for evaluation of the contributions from local and cosmic sources and analysis of related satellite observations. Work involving modeling of energetic particle precipitation into planetary atmospheres and formation of the planetary and exoplanetary escape fluxes has been performed with very accurate cross sections, describing momentum-energy transfer processes with high precision. Results of the Monte Carlo simulations, carried out for the Mars atmosphere at different solar conditions, can be used for analysis of observational data for Mars atmospheric escape and investigation into the history of Martian water.
1 Introduction
1(4)
Bibliography
3(2)
2 Particle Scattering in Astrophysical Environments
5(80)
2.1 Collisional Cross Sections
6(26)
2.1.1 Partial Wave Scattering
6(10)
2.1.2 Interaction Potentials
16(2)
2.1.3 Partial Wave Cross Sections
18(8)
2.1.4 Empirical Scaling Cross Sections
26(4)
2.1.5 Charge Exchange Cross Sections
30(2)
2.2 Monte Carlo Transport
32(12)
2.2.1 Ion Transport
38(4)
2.2.2 Frame Transformations
42(2)
2.3 Precipitation of Energetic Neutral Atoms in the Atmosphere of Mars
44(24)
2.4 Transport of Energetic Neutral Atoms in the Local Interstellar Medium
68(17)
Bibliography
80(5)
3 X-Ray Scattering by Nanoparticles
85(20)
3.1 Radiation Scattering Cross Sections
86(8)
3.2 Heliosphere Dust Scattering
94(4)
3.3 X-Ray Scattering from Cometary Atmospheres
98(7)
Bibliography
102(3)
4 Conclusions
105