Muutke küpsiste eelistusi

E-raamat: Schaum's Outline of Probability, Random Variables, and Random Processes, Fourth Edition

  • Formaat: 352 pages
  • Ilmumisaeg: 22-Oct-2019
  • Kirjastus: McGraw-Hill Education
  • Keel: eng
  • ISBN-13: 9781260453829
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 30,89 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 352 pages
  • Ilmumisaeg: 22-Oct-2019
  • Kirjastus: McGraw-Hill Education
  • Keel: eng
  • ISBN-13: 9781260453829
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product.

Tough Test Questions? Missed Lectures? Not Enough Time?

Fortunately, there’s Schaum’s.

More than 40 million students have trusted Schaum’s to help them succeed in the classroom and on exams. Schaum’s is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills.

Schaum’s Outline of Probability, Random Variables, and Random Processes, Fourth Edition is packed with hundreds of examples, solved problems, and practice exercises to test your skills. This updated guide approaches the subject in a more concise, ordered manner than most standard texts, which are often filled with extraneous material.

Schaum’s Outline of Probability, Random Variables, and Random Processes, Fourth Edition features:

•  405 fully-solved problems
•  22 problem-solving videos
•  An accessible review of probability and statistics concepts
•  Clear, concise explanations of probability, random variables, and random processes
•  Content supplements the major leading textbooks in probability and statistics
•  Content that is appropriate for Probability, Random Processes, Stochastic Processes, Probability and Random Variables, Introduction to Probability and Statistics courses

PLUS: Access to the revised Schaums.com website and new app, containing 22 problem-solving videos, and more.

Schaum’s reinforces the main concepts required in your course and offers hundreds of practice exercises to help you succeed. Use Schaum’s to shorten your study time—and get your best test scores!

Schaum’s OutlinesProblem solved.

      Chapter 1 Probability
      1(49)
      1.1 Introduction
      1(1)
      1.2 Sample Space and Events
      1(1)
      1.3 Algebra of Sets
      2(4)
      1.4 Probability Space
      6(3)
      1.5 Equally Likely Events
      9(1)
      1.6 Conditional Probability
      10(1)
      1.7 Total Probability
      10(1)
      1.8 Independent Events
      11(39)
      Solved Problems
      12(38)
      Chapter 2 Random Variables
      50(51)
      2.1 Introduction
      50(1)
      2.2 Random Variables
      50(2)
      2.3 Distribution Functions
      52(1)
      2.4 Discrete Random Variables and Probability Mass Functions
      53(1)
      2.5 Continuous Random Variables and Probability Density Functions
      54(1)
      2.6 Mean and Variance
      54(1)
      2.7 Some Special Distributions
      55(9)
      2.8 Conditional Distributions
      64(37)
      Solved Problems
      65(36)
      Chapter 3 Multiple Random Variables
      101(48)
      3.1 Introduction
      101(1)
      3.2 Bivariate Random Variables
      101(1)
      3.3 Joint Distribution Functions
      102(1)
      3.4 Discrete Random Variables---Joint Probability Mass Functions
      103(1)
      3.5 Continuous Random Variables---Joint Probability Density Functions
      104(1)
      3.6 Conditional Distributions
      105(1)
      3.7 Covariance and Correlation Coefficient
      106(1)
      3.8 Conditional Means and Conditional Variances
      107(1)
      3.9 W-Variate Random Variables
      108(2)
      3.10 Special Distributions
      110(39)
      Solved Problems
      112(37)
      Chapter 4 Functions of Random Variables, Expectation, Limit Theorems
      149(58)
      4.1 Introduction
      149(1)
      4.2 Functions of One Random Variable
      149(1)
      4.3 Functions of Two Random Variables
      150(1)
      4.4 Functions of n Random Variables
      151(1)
      4.5 Expectation
      152(2)
      4.6 Probability Generating Functions
      154(1)
      4.7 Moment Generating Functions
      155(1)
      4.8 Characteristic Functions
      156(2)
      4.9 The Laws of Large Numbers and the Central Limit Theorem
      158(49)
      Solved Problems
      159(48)
      Chapter 5 Random Processes
      207(64)
      5.1 Introduction
      207(1)
      5.2 Random Processes
      207(1)
      5.3 Characterization of Random Processes
      208(1)
      5.4 Classification of Random Processes
      209(2)
      5.5 Discrete-Parameter Markov Chains
      211(5)
      5.6 Poisson Processes
      216(2)
      5.7 Wiener Processes
      218(1)
      5.8 Martingales
      219(52)
      Solved Problems
      222(49)
      Chapter 6 Analysis and Processing of Random Processes
      271(41)
      6.1 Introduction
      271(1)
      6.2 Continuity, Differentiation, Integration
      271(2)
      6.3 Power Spectral Densities
      273(2)
      6.4 White Noise
      275(1)
      6.5 Response of Linear Systems to Random Inputs
      276(3)
      6.6 Fourier Series and Karhunen-Loeve Expansions
      279(1)
      6.7 Fourier Transform of Random Processes
      280(32)
      Solved Problems
      282(30)
      Chapter 7 Estimation Theory
      312(19)
      7.1 Introduction
      312(1)
      7.2 Parameter Estimation
      312(1)
      7.3 Properties of Point Estimators
      312(1)
      7.4 Maximum-Likelihood Estimation
      313(1)
      7.5 Bayes' Estimation
      314(1)
      7.6 Mean Square Estimation
      314(1)
      7.7 Linear Mean Square Estimation
      315(16)
      Solved Problems
      316(15)
      Chapter 8 Decision Theory
      331(18)
      8.1 Introduction
      331(1)
      8.2 Hypothesis Testing
      331(1)
      8.3 Decision Tests
      332(17)
      Solved Problems
      335(14)
      Chapter 9 Queueing Theory
      349(18)
      9.1 Introduction
      349(1)
      9.2 Queueing Systems
      349(1)
      9.3 Birth-Death Process
      350(2)
      9.4 The M/M/1 Queueing System
      352(1)
      9.5 The M/M/s Queueing System
      352(1)
      9.6 The M/M/1/K Queueing System
      353(1)
      9.7 The M/M/s/K Queueing System
      354(13)
      Solved Problems
      355(12)
      Chapter 10 Information Theory
      367(44)
      10.1 Introduction
      367(1)
      10.2 Measure of Information
      367(2)
      10.3 Discrete Memory less Channels
      369(2)
      10.4 Mutual Information
      371(2)
      10.5 Channel Capacity
      373(1)
      10.6 Continuous Channel
      374(1)
      10.7 Additive White Gaussian Noise Channel
      375(1)
      10.8 Source Coding
      376(2)
      10.9 Entropy Coding
      378(35)
      Solved Problems
      380(33)
      Appendix A Normal Distribution 411(2)
      Appendix B Fourier Transform 413(4)
      B.1 Continuous-Time Fourier Transform
      413(1)
      B.2 Discrete-Time Fourier Transform
      414(3)
      Index 417
      McGraw-Hill authors represent the leading experts in their fields and are dedicated to improving the lives, careers, and interests of readers worldwide.