Muutke küpsiste eelistusi

E-raamat: Schwarz-Pick Type Inequalities

  • Formaat: PDF+DRM
  • Sari: Frontiers in Mathematics
  • Ilmumisaeg: 05-Apr-2009
  • Kirjastus: Birkhauser Verlag AG
  • Keel: eng
  • ISBN-13: 9783034600002
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 61,74 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Frontiers in Mathematics
  • Ilmumisaeg: 05-Apr-2009
  • Kirjastus: Birkhauser Verlag AG
  • Keel: eng
  • ISBN-13: 9783034600002
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The aim of the present book is a uni ed representation of some recent results in geometric function theory together with a consideration of their historical sources. These results are concerned with functions f, holomorphic or meromorphic in a domain ? in the extended complex planeC. The only additional condition we impose on these functions is the condition that the range f(?) is contained in a given domain ??C.Thisfactwillbedenotedby f? A(?,?). We shall describe (n) how one may get estimates for the derivatives|f (z )|,n N,f ? A(?,?), 0 dependent on the position of z in ? and f(z)in . 0 0 1.1 Historical remarks The beginning of this program may be found in the famous article [ 125] of G. Pick. There, he discusses estimates for the MacLaurin coe cients of functions with positive real part in the unit disc found by C. Carath' eodory in [ 52]. Pick tells his readers that he wants to generalize Carath' eodory's estimates such that the special role of the expansion point at the origin is no longer important. For the convenience of our readers we quote this sentence in the original language: Durch lineare Transformation von z oder, wie man sagen darf, durch kreis- ometrische Verallgemeinerung, kann man die Sonderstellung des Wertes z=0 wegscha en, so dass sich Relationen fur .. die Di erentialquotienten von w an - liebiger Stelle ergeben. The ?rst great success of this program was G. Pick's theorem, as it is called by Carath' eodory himself, compare [ 54], vol II, 286-289.

Arvustused

From the reviews:

The aim of this book is to give a unified presentation of some recent results in geometric function theory together with a consideration of their historical sources. The extensive historical references are interesting, thorough and informative. this book is filled with many challenging conjectures and suggested problems for exploring new research. In summary this is a delightful book that anyone interested in interrelating geometry and classical geometric function theory should read.­­­ (Roger W. Barnard, Mathematical Reviews, Issue 2010 j)

Basic coefficient inequalities.- The Poincaré metric.- Basic
Schwarz-Pick type inequalities.- Punishing factors for special cases.-
Multiply connected domains.- Related results.- Some open problems.