Muutke küpsiste eelistusi

E-raamat: Self-Organized 3D Integrated Optical Interconnects: with All-Photolithographic Heterogeneous Integration

(Tokyo University of Technology, Japan)
  • Formaat: 380 pages
  • Ilmumisaeg: 08-Mar-2021
  • Kirjastus: Jenny Stanford Publishing
  • ISBN-13: 9781000064605
  • Formaat - PDF+DRM
  • Hind: 150,80 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 380 pages
  • Ilmumisaeg: 08-Mar-2021
  • Kirjastus: Jenny Stanford Publishing
  • ISBN-13: 9781000064605

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Currently, light waves are ready to come into boxes of computers in high-performance computing systems like data centers and super computers to realize intra-box optical interconnects. For inter-box optical interconnects, light waves have successfully been introduced by OE modules, in which discrete bulk-chip OE/electronic devices are assembled using the flip-chip-bonding-based packaging technology. OE modules, however, are not applicable to intra-box optical interconnects, because intra-box interconnects involve “short line distances of the cm–mm order” and “large line counts of hundreds-thousands.” This causes optics excess, namely, excess components, materials, spaces, fabrication efforts for packaging, and design efforts. The optics excess raises sizes and costs of intra-box optical interconnects enormously when they are built using conventional OE modules.

This book proposes the concept of self-organized 3D integrated optical interconnects and the strategy to reduce optics excess in intra-box optical interconnects.

Arvustused

"The book describes 3D optical interconnects intended for high-performance chip and board-level communications.

In the first three chapters, it presents the fundamentals and challenges of optical interconnection and the strategies for scaling at the chip and module level. It then covers, in three chapters, the fundamentals of heterogeneous integrated photonics technologies pioneered by the author's research. The final three chapters, in a hundred pages, treat self-organized lightwave networksor SOLNETand develop in detail the technologies for fabrication of the interconnect along with modeling, computer simulation of the performances and experimental validation.

The book is stimulating for a variety of readersscientists, engineers and studentsand will be a useful reference for further research and development in the nascent field of optical interconnections."

Silvano Donati, University of Pavia, Italy

Preface xiii
1 Introduction
1(6)
2 Guidelines toward Self-Organized 3D Integrated Optical Interconnects
7(18)
2.1 Advantages of Lightwave Implementation into Boxes of Computers
8(3)
2.2 Integrated Optical Interconnects
11(2)
2.3 Self-Organization of 3D Integrated Optical Interconnects
13(1)
2.4 E-0 and 0-E Signal Conversion in Integrated Optical Interconnects
14(5)
2.5 Core Technologies for Self-Organized 3D Integrated Optical Interconnects
19(6)
3 Scalable Film Optical Link Modules
25(26)
3.1 Concept of S-FOLM
25(2)
3.2 3D Integrated Optical Interconnects Built by S-FOLMs
27(3)
3.2.1 3D OE Platforms
27(3)
3.2.2 Structures within Boxes of Computers
30(1)
3.3 Various OE Structures Built by S-FOLMs
30(11)
3.3.1 OE-Film/Electrical Substrate Stack
33(2)
3.3.2 OE-Film/OE-Film Stack and Backside Connection
35(1)
3.3.3 Both-Side Mounting
35(1)
3.3.4 Micro Optical Link Module
36(1)
3.3.5 OE Tap Guide
36(1)
3.3.6 WDM Transceiver and WDM Inter-PCB Connect
37(1)
3.3.7 3D Optical Circuits for WDM
38(3)
3.4 Optoelectronic Amplifier/Driver-Less Substrate
41(10)
3.4.1 Concept of OE-ADLES
41(2)
3.4.2 Power Dissipation and RC Delay in OE-ADLES
43(8)
4 Optical Waveguide Films with Vertical Mirrors and 3D Optical Circuits
51(52)
4.1 Built-in Mask Method
52(1)
4.2 Fabrication of Optical Waveguides and Vertical Mirrors
53(7)
4.2.1 Waveguide Cores
55(2)
4.2.2 Vertical Mirrors
57(3)
4.3 Vertical Mirrors with Multi-Core-Layer Skirt-Type Structures
60(10)
4.3.1 Observation of Beam Leakage and Scattering at Vertical Mirrors
60(2)
4.3.2 Three-Core-Layer Skirt-Type Vertical Mirrors
62(1)
4.3.3 Simulations of Beam Leakage/Scattering at Vertical Mirrors
62(3)
4.3.4 Fabrication of Multi-Core-Layer Skirt-Type Vertical Mirrors
65(5)
4.4 3D Optical Circuits
70(9)
4.4.1 Structures
70(1)
4.4.2 Type I: Stacked Waveguide Films with Vertical Mirrors
71(1)
4.4.2.1 Demonstration of 3D optical wiring
71(1)
4.4.2.2 Loss measurements
72(3)
4.4.2.3 Loss at Optical Z-Connection
75(2)
4.4.3 Type II: Waveguide Films with Vertical Waveguides
77(2)
4.5 Optical Waveguide Films Stacked on Electrical Boards
79(9)
4.5.1 Process Flow
79(4)
4.5.2 Waveguide-Film Stacking on PCBs
83(5)
4.6 Nanoscale Waveguides Made of PRI Sol-Gel Thin Films
88(15)
4.6.1 Linear, Bending, and Branching Waveguides
89(1)
4.6.1.1 Fabrication processes
89(2)
4.6.1.2 Linear waveguides
91(4)
4.6.1.3 Bending and branching waveguides
95(4)
4.6.2 Vertical Mirrors and All-Air-Cladding Waveguides
99(4)
5 Resource-Saving All-Photolithographic Heterogeneous Integration: PL-Pack with SORT
103(34)
5.1 Advantages of PL-Pack with SORT over Conventional Packaging
104(2)
5.2 PL-Pack with SORT
106(6)
5.2.1 Whole Process Flow of PL-Pack with SORT
106(1)
5.2.2 Process Flow of SORT
107(5)
5.3 Impacts of PL-Pack with SORT
112(9)
5.3.1 Material Consumption and Costs
113(2)
5.3.2 Mechanical Properties
115(2)
5.3.3 Transfer Step Count
117(2)
5.3.4 Small/Thin-Die Placement Density
119(2)
5.4 SORT of Polymer Waveguide Lenses
121(4)
5.5 SORT of Waveguide Cores
125(4)
5.5.1 SORT Process for Optical Waveguides
125(2)
5.5.2 Experimental Demonstration of SORT for Optical Waveguides
127(2)
5.6 Light-Assisted SORT
129(4)
5.6.1 LA-SORT
129(1)
5.6.2 Experimental Demonstration of LA-SORT
130(3)
5.7 SORT for Nanoscale Heterogeneous Integration
133(4)
6 High-Speed/Small-Size Light Modulators and Optical Switches
137(30)
6.1 Classification of Light Modulators and Optical Switches
137(3)
6.2 Variable Well Optical ICs and Waveguide Prism Deflectors
140(3)
6.3 Design and Predicted Performance of WPDs
143(12)
6.3.1 EO Materials for WPDs
143(2)
6.3.2 Model for 2 × 2 WPD Optical Switch
145(1)
6.3.2.1 Preliminary model
145(1)
6.3.2.2 Optimized model for performance evaluation
146(5)
6.3.3 Predicted Performance
151(4)
6.4 Advanced WPDs
155(2)
6.4.1 WPD Optical Switches with ADD Functions
155(1)
6.4.2 WPD Optical Switches with MUX/DEMUX Functions
156(1)
6.5 Transient Responses in Microring Resonators and Photonic Crystals
157(10)
7 Self-Organized Lightwave Networks
167(60)
7.1 Concept of SOLNETs
167(11)
7.1.1 Types of SOLNETs
168(3)
7.1.2 PRI Materials
171(2)
7.1.3 One-Photon and Two-Photon SOLNETs
173(3)
7.1.4 Fabrication Processes of Luminescent Targets and Luminescent Regions
176(2)
7.2 Performance of SOLNETs Predicted by Computer Simulations
178(22)
7.2.1 Simulation Models
178(4)
7.2.2 Simulation Procedures
182(1)
7.2.3 SOLNETs between Nanoscale Waveguides
183(1)
7.2.3.1 TB-SOLNET/P-SOLNET
183(6)
7.2.3.2 R-SOLNET
189(1)
7.2.3.3 LA-SOLNET
190(2)
7.2.3.4 Performance of couplings
192(1)
7.2.4 SOLNETs between Microscale and Nanoscale Waveguides
193(1)
7.2.4.1 TB-SOLNET/P-SOLNET
193(2)
7.2.4.2 R-SOLNET
195(2)
7.2.4.3 LA-SOLNET
197(1)
7.2.4.4 Performance of couplings
198(2)
7.3 Experimental Demonstrations of One-Photon SOLNETs
200(15)
7.3.1 One-Photon TB-SOLNETs
200(1)
7.3.2 One-Photon R-SOLNETs with Micromirrors Formed by Free-Space Write Beams
201(3)
7.3.3 One-Photon R-SOLNETs with Micromirrors
204(3)
7.3.4 One-Photon R-SOLNETs with Reflective Objects
207(2)
7.3.5 One-Photon R-SOLNETs with Luminescent Targets
209(1)
7.3.5.1 Coumarin 481 luminescent targets
209(3)
7.3.5.2 Alq3 luminescent targets
212(3)
7.4 Experimental Demonstrations of Two-Photon SOLNETs
215(12)
7.4.1 Two-Photon TB-SOLNETs
215(4)
7.4.2 Two-Photon R-SOLNETs
219(8)
8 Self-Organized 3D Integrated Optical Interconnects: Model Proposals
227(8)
8.1 3D Integrated Optical Interconnects with P- and R-SOLNETs
227(6)
8.2 3D Integrated Optical Interconnects with LA- and R-SOLNETs
233(2)
9 Self-Organized 3D Micro Optical Switching Systems: Model Proposals and Predicted Performance
235(26)
9.1 Advantages of 3D-MOSS
235(2)
9.2 Architecture of 3D-MOSS
237(6)
9.2.1 3D-MOSS
237(4)
9.2.2 3D-MOSS with SOLNET Implementation
241(2)
9.3 Predicted Performance of 1024 × 1024 3D-MOSS
243(18)
9.3.1 Structural Model
243(6)
9.3.2 Insertion Loss
249(8)
9.3.3 Electrical Characteristics
257(2)
9.3.4 Impact of HIC Waveguide Implementation into 3D-MOSS
259(2)
10 Film-Based Integrated Solar Energy Conversion Systems
261(40)
10.1 Integrated Solar Films
262(5)
10.2 Waveguide-Type Thin-Film Solar Cells
267(4)
10.3 Key Fabrication Processes for Integrated Solar Films
271(8)
10.4 Multilayer Waveguide-Type Light Beam Collecting Films
279(15)
10.4.1 Simulation Procedure
280(1)
10.4.2 Light Beam Collection by Light Beam Collecting Films
281(9)
10.4.3 Overall Consideration for Light Beam Collecting Efficiency
290(4)
10.5 Thin-Film Artificial Photosynthesis Cells
294(7)
11 Embodiments Disclosed in Patents
301(36)
11.1 Integrated OE MCMs
301(9)
11.2 3D Optical Interconnects
310(16)
11.2.1 Horizontal Layer Attachment
310(11)
11.2.2 Vertical Layer Attachment
321(5)
11.3 Micro Optical Link Modules
326(5)
11.4 Active Optical Sheets, Boards, and Connectors
331(6)
12 Future Challenges
337(16)
12.1 Enhancement of the Pockels Effect by Controlling Wavefunction Shapes
338(5)
12.2 Molecular Layer Deposition (MLD)
343(5)
12.3 Growth of Polymer MQDs by MLD
348(5)
Epilogue 353(4)
Index 357
Tetsuzo Yoshimura is currently a professor emeritus at Tokyo University of Technology.