Muutke küpsiste eelistusi

E-raamat: Semantic Video Object Segmentation for Content-Based Multimedia Applications

  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Semantic Video Object Segmentation for Content-Based Multimedia Applications provides a thorough review of state-of-the-art techniques as well as describing several novel ideas and algorithms for semantic object extraction from image sequences. Semantic object extraction is an essential element in content-based multimedia services, such as the newly developed MPEG4 and MPEG7 standards. An interactive system called SIVOG (Smart Interactive Video Object Generation) is presented, which converts user's semantic input into a form that can be conveniently integrated with low-level video processing. Thus, high-level semantic information and low-level video features are integrated seamlessly into a smart segmentation system. A region and temporal adaptive algorithm was further proposed to improve the efficiency of the SIVOG system so that it is feasible to achieve nearly real-time video object segmentation with robust and accurate performances. Also included is an examination of the shape coding problem and the object segmentation problem simultaneously.
Semantic Video Object Segmentation for Content-Based Multimedia Applications will be of great interest to research scientists and graduate-level students working in the area of content-based multimedia representation and applications and its related fields.

Muu info

Springer Book Archives
1. Introduction.-
1. Significance of the Research.-
2. Background of the
Research.-
3. Contributions of the Research.-
4. Outline of the Monograph.-
2. Review of Previous Work.-
1. Change Detection.-
2. Motion Segmentation.-
3. Spatial and Temporal Segmentation.-
4. User Interactive Segmentation.-
5.
Evaluation of Segmentation Quality.-
3. Automatic Segmentation.-
1. Video
Segmentation with Color and Motion.-
2. Color-based Spatial Segmentation.-
3.
Motion Tracking and Spatial-Temporal Integration.-
4. Experimental Results.-
4. Object Shape Postprocessing.-
1. Proposed Algorithm for Coding
Optimization.-
2. Shape Coding Optimization.-
3. Experimental Results.-
5.
Interactive Segmentation Algorithms.-
1. Description of the SIVOG System.-
2.
Experimental Results.-
6. Temporal and Spatial Adaptive Processing.-
1.
Introduction.-
2. Description of the SIVOG System.-
3. Region and Temporal
Adaptive Processing.-
4. Experimental Results.-
7. Summary and Future Work.-
1. Future Work.- References.- About the authors.