Muutke küpsiste eelistusi

E-raamat: Semi-Infinite Fractional Programming

  • Formaat - EPUB+DRM
  • Hind: 111,14 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book presents a smooth and unified transitional framework from generalised fractional programming, with a finite number of variables and a finite number of constraints, to semi-infinite fractional programming, where a number of variables are finite but with infinite constraints. It focuses on empowering graduate students, faculty and other research enthusiasts to pursue more accelerated research advances with significant interdisciplinary applications without borders. In terms of developing general frameworks for theoretical foundations and real-world applications, it discusses a number of new classes of generalised second-order invex functions and second-order univex functions, new sets of second-order necessary optimality conditions, second-order sufficient optimality conditions, and second-order duality models for establishing numerous duality theorems for discrete minmax (or maxmin) semi-infinite fractional programming problems. In the current interdisciplinary supercomputer-oriented research environment, semi-infinite fractional programming is among the most rapidly expanding research areas in terms of its multi-facet applications empowerment for real-world problems, which may stem from many control problems in robotics, outer approximation in geometry, and portfolio problems in economics, that can be transformed into semi-infinite problems as well as handled by transforming them into semi-infinite fractional programming problems. As a matter of fact, in mathematical optimisation programs, a fractional programming (or program) is a generalisation to linear fractional programming. These problems lay the theoretical foundation that enables us to fully investigate the second-order optimality and duality aspects of our principal fractional programming problem as well as its semi-infinite counterpart.
1 Higher Order Parametric Duality Models
1(16)
1 Role of Parametric Duality Models
1(1)
2 Generalized Sonvexities
2(4)
3 New Duality Models
6(2)
4 Duality Theorems
8(7)
5 General Remarks
15(2)
References
15(2)
2 New Generation Parametric Optimality
17(20)
1 The Significance of Semi-infinite Fractional Programming
17(1)
2 Basic Concepts and Auxiliary Results
18(3)
3 Sufficient Optimality Theorems
21(13)
4 General Remarks
34(3)
References
36(1)
3 Accelerated Roles for Parametric Optimality
37(22)
1 Semi-infinite Fractional Programming
37(1)
2 General Concepts and Auxiliary Results
38(3)
3 New Sufficient Optimality Conditions
41(14)
4 General Remarks
55(4)
References
58(1)
4 Semi-infinite Multiobjective Fractional Programming I
59(24)
1 Role of Sufficient Efficiency Conditions
59(2)
2 Basic Concepts
61(5)
3 Sufficient Efficiency Theorems
66(15)
4 General Remarks
81(2)
References
82(1)
5 Semi-infinite Multiobjective Fractional Programming II
83(32)
1 Hadamard Derivatives and Parametric Duality Models
83(2)
2 Significant Basic Concepts
85(2)
3 Duality Model I
87(7)
4 Duality Model II
94(17)
5 Some Applications
111(2)
6 General Remarks
113(2)
References
114(1)
6 Semi-infinite Multiobjective Fractional Programming III
115(36)
1 Role of Semi-infinite Multiobjective Fractional Programs
115(1)
2 Significant Basic Concepts and Auxiliary Results
116(3)
3 Duality Model I and Duality Theorems
119(7)
4 Duality Model II and Duality Theorems
126(20)
5 Some Applications
146(3)
6 General Remarks
149(2)
References
150(1)
7 Hanson-Antczak-Type Generalized V-Invexity I
151(22)
1 Role of Sufficient Conditions
151(2)
2 Hanson-Antczak-Type Invexities
153(5)
3 Sufficient Efficiency Conditions
158(7)
4 Generalized Sufficiency Criteria
165(6)
5 General Remarks
171(2)
Reference
172(1)
8 Parametric Optimality in Semi-infinite Fractional Programs
173(20)
1 Role of Optimality in Semi-infinite Fractional Programming
173(1)
2 Generalized Sonvexities
174(2)
3 Parametric Necessary and Sufficient Optimality
176(14)
4 General Remarks
190(3)
References
190(3)
9 Semi-infinite Discrete Minmax Fractional Programs
193(18)
1 Significance of Semi-infinite Fractional Programming
193(1)
2 Hybrid Sonvexities
194(2)
3 Main Results on Necessary and Sufficient Optimality
196(13)
4 General Remarks
209(2)
References
209(2)
10 Next-Generation Semi-infinite Discrete Fractional Programs
211(20)
1 Necessary and Sufficient Optimality
211(1)
2 Generalized Sonvexities
212(1)
3 Necessary and Sufficient Optimality Theorems
213(17)
4 General Remarks
230(1)
References
230(1)
11 Hanson-Antczak-Type Sonvexity III
231(34)
1 Semi-infinite Multiobjective Fractional Programming
231(3)
2 Hanson-Antczak Type Sonvexities
234(5)
3 Duality Models I
239(4)
4 Duality Model II
243(6)
5 Duality Model III
249(7)
6 Duality Model IV
256(7)
7 General Remarks
263(2)
References
263(2)
12 Semi-infinite Multiobjective Optimization
265(18)
1 The Significance of Semi-infinite Multiobjective Optimization
265(1)
2 Significant Related Concepts
266(2)
3 A Theorem of the Alternative and Necessary Efficiency Conditions
268(3)
4 Role of Hadamard Differentiability
271(3)
5 Role of Gateaux Differentiability
274(1)
6 Some Applications
275(4)
7 Significant Specializations
279(2)
8 General Remarks
281(2)
References
281(2)
References 283
RAM U. VERMA is president of International Publications, USA. Before joining Texas State University, he held several academic positions, ranging from lecturer to assistant professor, associate professor, and full professor at the University of Cape Coast, the University of Tripoli, the University of Orient, the University of Puerto Rico, New York University (visiting faculty), the University of Central Florida, Mount Olive College, Duke University (visiting scholar) and the University of Toledo. His research interests encompass mathematical programming, fractional programming, semi-infinite fractional programming, multi-objective fractional programming, numerical analysis, generalised Newtons methods, new generation Newton-type methods, nonlinear functional analysis, applied analysis, evolution equations and semigroups, stochastic analysis, mathematics education, and determinant theory for singular integral equations. He has published over 700 researcharticles in several international refereed journals including Applied Mathematics and Computation, Applicable Analysis, Archivum Math, Communications in Nonlinear Science and Numerical Simulations, Czechoslovak Mathematical Journal, Electron, Journal of Differential Equations, Journal of Computational Analysis and Applications, Journal of Mathematical Analysis and Applications, Journal of Optimization Theory and Applications, Nonlinear Analysis: TMA, Numerical Functional Analysis and Optimization, Proceedings of the American Mathematical Society, Proceedings of the Royal Irish Academy, and ZAMM: Z. Angew. Math. Mech. He is the founder editor-in-chief of four journals from International Publications: Advances in Nonlinear Variational Inequalities, Communications on Applied Nonlinear Analysis, Pan-American Mathematical Journal, and Transactions on Mathematical Programming and Applications. He is also an associate editor of several international journals, including Applied Mathematics and Computation, International Journal of Mathematics and Mathematical Sciences, Journal of Operators, and Journal of Computational Analysis and Applications.