Muutke küpsiste eelistusi

E-raamat: Semi-Supervised Learning: Background, Applications and Future Directions

Edited by , Edited by
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 259,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Semi-supervised learning is an important area of machine learning. It deals with problems that involve a lot of unlabeled data and very scarce labeled data. The book focuses on some state-of-the-art research on semi-supervised learning. In the first chapter, Weng, Dornaika and Jin introduce a graph construction algorithm named the constrained data self-representative graph construction (CSRGC). In the second chapter, to reduce the graph construction complexity, Zhang et al. use anchors that were a special subset chosen from the original data to construct the full graph, while randomness was injected into graphs to improve the classification accuracy and deal with the high dimensionality issue. In the third chapter, Dornaika et al. introduces a kernel version of the Flexible Manifold Embedding (KFME) algorithm. In the fourth chapter, Zhang et al. present an efficient and robust graph-based transductive classification method known as the minimum tree cut (MTC), for large scale applications. In the fifth chapter, Salazar, Safont and Vergara investigated the performance of semi-supervised learning methods in two-class classification problems with a scarce population of one of the classes. In the sixth chapter, by breaking the sample identically and independently distributed (i.i.d.) assumption, one novel framework called the field support vector machine (F-SVM) with both classification (F-SVC) and regression (F-SVR) purposes is introduced. In the seventh chapter, Gong employs the curriculum learning methodology by investigating the difficulty of classifying every unlabeled example. As a result, an optimized classification sequence was generated during the iterative propagations, and the unlabeled examples are logically classified from simple to difficult. In the eighth chapter, Tang combines semi-supervised learning with geo-tagged photo streams and concept detection to explore situation recognition. This book is suitable for university students (undergraduate or graduate) in computer science, statistics, electrical engineering, or anyone else who would potentially use machine learning algorithms; professors, who research artificial intelligence, pattern recognition, machine learning, data mining and related fields; and engineers, who apply machine learning models into their products.
Preface vii
Chapter 1 Constrained Data Self-Representative Graph Construction
1(20)
L. Weng
F. Dornaika
Z. Jin
Chapter 2 Injecting Randomness into Graphs: An Ensemble Semi-Supervised Learning Framework
21(24)
Qin Zhang
Jianyuan Sun
Guoqiang Zhong
Junyu Dong
Feng Gao
Huizhen Yang
Hina Saeeda
Chapter 3 Label Propagation via Kernel Flexible Manifold Embedding
45(22)
F. Dornaika
Y. El Traboulsi
I. Arganda-Carreras
Chapter 4 Fast Graph-Based Semi-Supervised Learning and Its Applications
67(32)
Yan-Ming Zhang
Kaizhu Huang
Guang-Gang Geng
Cheng-Lin Liu
Chapter 5 Semi-Supervised Learning in Two-Class Classification with a Scarce Population Class
99(24)
Addisson Salazar
Gonzalo Safont
Luis Vergara
Chapter 6 Self-Training Field Pattern Prediction Based on Kernel Methods
123(48)
Haochuan Jiang
Kaizhu Huang
Xu-Yao Zhang
Rui Zhang
Chapter 7 Semi-Supervised Learning via Multi-Modal Curriculum Generation
171(36)
Chen Gong
Chapter 8 Semi-Supervised Learning on Big Multimedia Data for Situation Recognition
207(16)
Mengfan Tang
About the Editors 223(2)
Index 225