Muutke küpsiste eelistusi

E-raamat: Sensitivity Analysis in Remote Sensing

  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book contains a detailed presentation of general principles of sensitivity analysis as well as their applications to sample cases of remote sensing experiments. An emphasis is made on applications of adjoint problems, because they are more efficient in many practical cases, although their formulation may seem counterintuitive to a beginner. Special attention is paid to forward problems based on higher-order partial differential equations, where a novel matrix operator approach to formulation of corresponding adjoint problems is presented.

Sensitivity analysis (SA) serves for quantitative models of physical objects the same purpose, as differential calculus does for functions. SA provides derivatives of model output parameters (observables) with respect to input parameters. In remote sensing SA provides computer-efficient means to compute the jacobians, matrices of partial derivatives of observables with respect to the geophysical parameters of interest. The jacobians areused to solve corresponding inverse problems of remote sensing. They also play an important role already while designing the remote sensing experiment, where they are used to estimate the retrieval uncertainties of the geophysical parameters with given measurement errors of the instrument, thus providing means for formulations of corresponding requirements to the specific remote sensing instrument.

If the quantitative models of geophysical objects can be formulated in an analytic form, then sensitivity analysis is reduced to differential calculus. But in most cases, the practical geophysical models used in remote sensing are based on numerical solutions of forward problems differential equations with initial and/or boundary conditions. As a result, these models cannot be formulated in an analytic form and this is where the methods of SA become indispensable.

This book is intended for a wide audience. The beginners in remote sensing could use it as a single source, covering key issues of SA, from general principles, through formulation of corresponding linearized and adjoint problems, to practical applications to uncertainty analysis and inverse problems in remote sensing. The experts, already active in the field, may find useful the alternative formulations of some key issues of SA, for example, use of individual observables, instead of a widespread use of the cumulative cost function. The book also contains an overview of authors matrix operator approach to formulation of adjoint problems for forward problems based on the higher-order partial differential equations. This approach still awaits its publication in the periodic literature and thus may be of interest to readership across all levels of expertise.

Arvustused

This book will be of great interest to a wide range of researchers specializing in inverse problems. It provides a new perspective for understanding the fundamental relations between sensitivity analysis and inverse problems. It also can be useful for beginners who wish to learn about the key issues of sensitivity analysis, the formulations of the corresponding linearized and adjoint problems, and practical applications of inverse problems in remote sensing. (Natesan Barani Balan, Mathematical Reviews, December, 2015)

1 Introduction: Remote Sensing and Sensitivity Analysis
1(2)
2 Sensitivity Analysis: Differential Calculus of Models
3(8)
2.1 General Considerations
3(2)
2.2 Input and Output Parameters of Models
5(1)
2.3 Sensitivities: Just Derivatives of Output Parameters with Respect to Input Parameters
6(5)
3 Three Approaches to Sensitivity Analysis of Models
11(6)
3.1 Finite-Difference Approach
11(1)
3.2 Linearization Approach
12(2)
3.3 Adjoint Approach
14(1)
3.4 Comparison of Three Approaches
15(2)
References
16(1)
4 Sensitivity Analysis of Analytic Models: Applications of Differential and Variational Calculus
17(10)
4.1 Linear Demo Model
17(2)
4.2 Non-linear Demo Model
19(1)
4.3 Model of Radiances of a Non-scattering Planetary Atmosphere
20(7)
References
25(2)
5 Sensitivity Analysis of Analytic Models: Linearization and Adjoint Approaches
27(22)
5.1 Linear Demo Model
27(6)
5.1.1 Linearization Approach
27(3)
5.1.2 Adjoint Approach
30(3)
5.2 Non-linear Demo Model
33(5)
5.2.1 Linearization Approach
33(2)
5.2.2 Adjoint Approach
35(3)
5.3 Model of Radiances of a Non-scattering Planetary Atmosphere
38(11)
5.3.1 Linearization Approach
38(4)
5.3.2 Adjoint Approach
42(6)
5.3.3 Summary
48(1)
References
48(1)
6 Sensitivity Analysis of Numerical Models
49(28)
6.1 Model of Radiances of a Scattering Planetary Atmosphere
49(12)
6.1.1 Baseline Forward Problem and Observables
49(2)
6.1.2 Linearization Approach
51(5)
6.1.3 Adjoint Approach
56(5)
6.2 Zero-Dimensional Model of Atmospheric Dynamics
61(6)
6.2.1 Baseline Forward Problem and Observables
61(2)
6.2.2 Linearization Approach
63(2)
6.2.3 Adjoint Approach
65(2)
6.3 Model of Orbital Tracking Data of the Planetary Orbiter Spacecraft
67(10)
6.3.1 Baseline Forward Problem and Observables
67(4)
6.3.2 Linearization Approach
71(3)
6.3.3 Adjoint Approach
74(2)
References
76(1)
7 Sensitivity Analysis of Models with Higher-Order Differential Equations
77(34)
7.1 General Principles of the Approach
77(5)
7.1.1 Stationary Problems
78(2)
7.1.2 Non-stationary Problems
80(2)
7.2 Applications to Stationary Problems
82(8)
7.2.1 Poisson Equation
82(5)
7.2.2 Bi-harmonic Equation
87(3)
7.3 Applications to Non-stationary Problems
90(9)
7.3.1 Heat Equation
90(6)
7.3.2 Wave Equation
96(3)
7.4 Stationary and Non-stationary Problems in 2D and 3D Space
99(12)
7.4.1 Poisson Equation
99(7)
7.4.2 Wave Equation
106(4)
References
110(1)
8 Applications of Sensitivity Analysis in Remote Sensing
111(10)
8.1 Sensitivities of Models: A Summary
111(1)
8.1.1 Discrete Parameters and Continuous Parameters
111(1)
8.2 Error Analysis of Forward Models
112(3)
8.2.1 Statistics of Multidimensional Random Variables
113(1)
8.2.2 Error Analysis of Output Parameters
113(1)
8.2.3 Error Analysis of Input Parameters
114(1)
8.3 Inverse Modeling: Retrievals and Error Analysis
115(6)
8.3.1 General Approach to Solution of Inverse Problems in Remote Sensing
115(1)
8.3.2 Well-Posed Inverse Problems and the Least Squares Method
116(1)
8.3.3 Ill-Posed Inverse Problems and the Statistical Regularization Method
117(2)
References
119(2)
Appendix: Operations with Matrices and Vectors 121(6)
Index 127