Muutke küpsiste eelistusi

E-raamat: Sensors, Actuators, and Their Interfaces: A multidisciplinary introduction

(University of Akron, USA)
  • Formaat: EPUB+DRM
  • Sari: Control, Robotics and Sensors
  • Ilmumisaeg: 05-Mar-2020
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9781785618369
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 247,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Control, Robotics and Sensors
  • Ilmumisaeg: 05-Mar-2020
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9781785618369
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

In this revised and expanded second edition, the author looks at sensors and actuators based on a broad area of detection technologies and methods. He takes a general and applications-oriented approach to the topic and makes it discipline-independent to cater for a broad audience.



Sensors and actuators are used daily in countless applications to ensure more accurate and reliable workflows and safer environments. Many students and young engineers with engineering and science backgrounds often come prepared with circuits and programming skills but have little knowledge of sensors and sensing strategies and their interfacing.

In this fully revised and expanded second edition, the author looks at sensors and actuators based on a broad area of detection methods. He takes a general and applications-oriented approach to the topic and makes it discipline-independent to cater for a broad audience. Important coverage is given to interfacing (the processes and mechanisms between the sensors and actuators) that makes systems work reliably and accurately. Topics covered include different type of sensors and actuators (temperature, thermal, optical, electric, magnetic, mechanical, acoustic, chemical, radiation, and smart sensors) and their interfaces. The book contains numerous examples and problem sets as well as useful appendices.

Preface with publisher's acknowledgments xiii
About the author xxi
1 Introduction
1(32)
1.1 Introduction
2(1)
1.2 A short historical note
3(2)
1.3 Definitions
5(9)
1.4 Classification of sensors and actuators
14(4)
1.5 General requirements for interfacing
18(3)
1.6 Units
21(8)
1.6.1 Base SI units
21(1)
1.6.2 Derived units
22(1)
1.6.3 Supplementary units
23(1)
1.6.4 Customary units
23(2)
1.6.5 Prefixes
25(1)
1.6.6 Other units and measures
26(3)
1.6.7 Convention for use of units
29(1)
1.1 Problems
29(3)
Reference
32(1)
2 Performance characteristics of sensors and actuators
33(44)
2.1 Introduction
33(1)
2.2 Input and output characteristics
34(33)
2.2.1 Transfer function
34(4)
2.2.2 Impedance and impedance matching
38(4)
2.2.3 Range, span, input and output full scale, resolution, and dynamic range
42(4)
2.2.4 Accuracy, errors, and repeatability
46(3)
2.2.5 Sensitivity and sensitivity analysis
49(8)
2.2.6 Hysteresis, nonlinearity, and saturation
57(4)
2.2.7 Frequency response, response time, and bandwidth
61(3)
2.2.8 Calibration
64(1)
2.2.9 Excitation
65(1)
2.2.10 Deadband
65(1)
2.2.11 Reliability
66(1)
2.3 Simulation
67(1)
2.4 Problems
68(9)
3 Temperature sensors and thermal actuators
77(70)
3.1 Introduction
77(3)
3.1.1 Units of temperature, thermal conductivity, heat, and heat capacity
79(1)
3.2 Thermoresistive sensors
80(20)
3.2.1 Resistance temperature detectors
80(13)
3.2.2 Silicon resistive sensors
93(3)
3.2.3 Thermistors
96(4)
3.3 Thermoelectric sensors
100(17)
3.3.1 Practical considerations
107(7)
3.3.2 Semiconductor thermocouples
114(1)
3.3.3 Thermopiles and thermoelectric generators
114(3)
3.4 p--n junction temperature sensors
117(5)
3.5 Other temperature sensors
122(11)
3.5.1 Optical and acoustical sensors
122(2)
3.5.2 Thermomechanical sensors and actuators
124(9)
3.6 Problems
133(14)
4 Optical sensors and actuators
147(56)
4.1 Introduction
148(1)
4.2 Optical units
149(1)
4.3 Materials
150(1)
4.4 Effects of optical radiation
151(6)
4.4.1 Thermal effects
151(1)
4.4.2 Quantum effects
151(6)
4.5 Quantum-based optical sensors
157(17)
4.5.1 Photoconducting sensors
157(5)
4.5.2 Photodiodes
162(5)
4.5.3 Photovoltaic diodes
167(4)
4.5.4 Phototransistors
171(3)
4.6 Photoelectric sensors
174(4)
4.6.1 The photoelectric sensor
174(1)
4.6.2 Photomultipliers
175(3)
4.7 Charge coupled (CCD) sensors and detectors
178(3)
4.8 Thermal-based optical sensors
181(8)
4.8.1 Passive IR sensors
181(8)
4.9 Active far infrared (AFIR) sensors
189(1)
4.10 Optical actuators
190(1)
4.11 Problems
191(12)
5 Electric and magnetic sensors and actuators
203(126)
5.1 Introduction
204(1)
5.2 Units
205(3)
5.3 The electric field: capacitive sensors and actuators
208(15)
5.3.1 Capacitive position, proximity, and displacement sensors
210(5)
5.3.2 Capacitive fluid level sensors
215(3)
5.3.3 Capacitive actuators
218(5)
5.4 Magnetic fields: sensors and actuators
223(27)
5.4.1 Inductive sensors
229(13)
5.4.2 Hall effect sensors
242(8)
5.5 Magnetohydrodynamic (MHD) sensors and actuators
250(4)
5.5.1 MHD generator or sensor
250(1)
5.5.2 MHD pump or actuator
251(3)
5.6 Magnetoresistance and magnetoresistive sensors
254(2)
5.7 Magnetostrictive sensors and actuators
256(7)
5.7.1 Magnetostrictive actuators
260(3)
5.8 Magnetometers
263(7)
5.8.1 Coil magnetometer
263(2)
5.8.2 The fluxgate magnetometer
265(4)
5.8.3 The SQUID
269(1)
5.9 Magnetic actuators
270(28)
5.9.1 Voice coil actuators
271(4)
5.9.2 Motors as actuators
275(19)
5.9.3 Magnetic solenoid actuators and magnetic valves
294(4)
5.10 Voltage and current sensors
298(11)
5.10.1 Voltage sensing
298(4)
5.10.2 Current sensing
302(4)
5.10.3 Resistance sensors
306(3)
5.11 Problems
309(20)
6 Mechanical sensors and actuators
329(64)
6.1 Introduction
329(1)
6.2 Some definitions and units
330(2)
6.3 Force sensors
332(16)
6.3.1 Strain gauges
332(2)
6.3.2 Semiconductor strain gauges
334(7)
6.3.3 Other strain gauges
341(1)
6.3.4 Force and tactile sensors
342(6)
6.4 Accelerometers
348(8)
6.4.1 Capacitive accelerometers
349(2)
6.4.2 Strain gauge accelerometers
351(1)
6.4.3 Magnetic accelerometers
351(2)
6.4.4 Other accelerometers
353(3)
6.5 Pressure sensors
356(12)
6.5.1 Mechanical pressure sensors
356(5)
6.5.2 Piezoresistive pressure sensors
361(5)
6.5.3 Capacitive pressure sensors
366(1)
6.5.4 Magnetic pressure sensors
366(2)
6.6 Velocity sensing
368(5)
6.7 Inertial sensors: gyroscopes
373(6)
6.7.1 Mechanical or rotor gyroscopes
373(2)
6.7.2 Optical gyroscopes
375(4)
6.8 Problems
379(14)
7 Acoustic sensors and actuators
393(72)
7.1 Introduction
394(1)
7.2 Units and definitions
395(3)
7.3 Elastic waves and their properties
398(12)
7.3.1 Longitudinal waves
400(9)
7.3.2 Shear waves
409(1)
7.3.3 Surface waves
409(1)
7.3.4 Lamb waves
410(1)
7.4 Microphones
410(7)
7.4.1 The carbon microphone
410(1)
7.4.2 The magnetic microphone
411(2)
7.4.3 The ribbon microphone
413(1)
7.4.4 Capacitive microphones
414(3)
7.5 The piezoelectric effect
417(7)
7.5.1 Electrostriction
421(1)
7.5.2 Piezoelectric sensors
421(3)
7.6 Acoustic actuators
424(10)
7.6.1 Loudspeakers
424(5)
7.6.2 Headphones and buzzers
429(5)
7.7 Ultrasonic sensors and actuators: transducers
434(8)
7.7.1 Pulse-echo operation
437(4)
7.7.2 Magnetostrictive transducers
441(1)
7.8 Piezoelectric actuators
442(5)
7.9 Piezoelectric resonators and saw devices
447(5)
7.10 Problems
452(13)
8 Chemical and biological sensors and actuators
465(62)
8.1 Introduction---chemistry and biochemistry
466(2)
8.2 Chemical units
468(2)
8.3 Electrochemical sensors
470(7)
8.3.1 Metal oxide sensors
470(3)
8.3.2 Solid electrolyte sensors
473(3)
8.3.3 The metal oxide semiconductor chemical sensor
476(1)
8.4 Potentiometric sensors
477(8)
8.4.1 Glass membrane sensors
478(3)
8.4.2 Soluble inorganic salt membrane sensors
481(1)
8.4.3 Polymer-immobilized ionophore membranes
482(1)
8.4.4 Gel-immobilized enzyme membranes
483(1)
8.4.5 The ion-sensitive field-effect transistor
484(1)
8.5 Thermochemical sensors
485(5)
8.5.1 Thermistor-based chemical sensors
485(2)
8.5.2 Catalytic sensors
487(2)
8.5.3 Thermal conductivity sensors
489(1)
8.6 Optical chemical sensors
490(5)
8.7 Mass sensors
495(3)
8.7.1 Mass humidity and gas sensors
496(1)
8.7.2 SAW mass sensors
497(1)
8.8 Humidity and moisture sensors
498(8)
8.8.1 Capacitive moisture sensors
499(3)
8.8.2 Resistive humidity sensor
502(1)
8.8.3 Thermal conduction moisture sensors
503(1)
8.8.4 Optical humidity sensor
503(3)
8.9 Chemical actuation
506(8)
8.9.1 The catalytic converter
507(2)
8.9.2 The airbag
509(1)
8.9.3 Electroplating
510(2)
8.9.4 Cathodic protection
512(2)
8.10 Problems
514(13)
9 Radiation sensors and actuators
527(62)
9.1 Introduction
528(2)
9.2 Units of radiation
530(1)
9.3 Radiation sensors
531(16)
9.3.1 Ionization sensors (detectors)
531(6)
9.3.2 Scintillation sensors
537(1)
9.3.3 Semiconductor radiation detectors
538(9)
9.4 Microwave radiation
547(16)
9.4.1 Microwave sensors
550(13)
9.5 Antennas as sensors and actuators
563(11)
9.5.1 General relations
564(1)
9.5.2 Antennas as sensing elements
565(8)
9.5.3 Antennas as actuators
573(1)
9.6 Problems
574(15)
10 MEMS and smart sensors and actuators
589(76)
10.1 Introduction
590(1)
10.2 Production of MEMS
591(7)
10.3 MEMS sensors and actuators
598(22)
10.3.1 MEMS sensors
599(10)
10.3.2 MEMS actuators
609(7)
10.3.3 Some applications
616(4)
10.4 Nanosensors and actuators
620(1)
10.5 Smart sensors and actuators
621(23)
10.5.1 Wireless sensors and actuators and issues associated with their use
626(5)
10.5.2 Modulation and demodulation
631(8)
10.5.3 Demodulation
639(1)
10.5.4 Encoding and decoding
640(4)
10.6 RFIDs and embedded sensors
644(3)
10.7 Sensor networks
647(5)
10.8 Problems
652(13)
11 Interfacing methods and circuits
665(104)
11.1 Introduction
666(2)
11.2 Amplifiers
668(17)
11.2.1 The operational amplifier
669(4)
11.2.2 Inverting and noninverting amplifiers
673(3)
11.2.3 The voltage follower
676(1)
11.2.4 The instrumentation amplifier
677(1)
11.2.5 The charge amplifier
678(2)
11.2.6 The integrator and the differentiator
680(2)
11.2.7 The current amplifier
682(1)
11.2.8 The comparator
682(3)
11.3 Power amplifiers
685(4)
11.3.1 Linear power amplifiers
685(2)
11.3.2 PWM and PWM amplifiers
687(2)
11.4 Digital circuits
689(8)
11.5 AID and D/A converters
697(14)
11.5.1 A/D conversion
697(10)
11.5.2 D/A conversion
707(4)
11.6 Bridge circuits
711(8)
11.6.1 Sensitivity
712(4)
11.6.2 Bridge output
716(3)
11.7 Data transmission
719(6)
11.7.1 Four-wire transmission
720(1)
11.7.2 Two-wire transmission for passive sensors
721(1)
11.7.3 Two-wire transmission for active sensors
721(4)
11.7.4 Digital data transmission protocols and buses
725(1)
11.8 Excitation methods and circuits
725(18)
11.8.1 Linear power supplies
726(2)
11.8.2 Switching power supplies
728(3)
11.8.3 Current sources
731(1)
11.8.4 Voltage references
732(2)
11.8.5 Oscillators
734(9)
11.9 Power harvesting
743(4)
11.9.1 Solar power harvesting
744(1)
11.9.2 Thermal gradient power harvesting
744(1)
11.9.3 Magnetic induction and RF power harvesting
745(1)
11.9.4 Power harvesting from vibrations
746(1)
11.10 Noise and interference
747(4)
11.10.1 Inherent noise
748(1)
11.10.2 Interference
748(3)
11.11 Problems
751(18)
12 Interfacing to microprocessors
769(64)
12.1 Introduction
770(1)
12.2 The microprocessor as a general-purpose controller
771(19)
12.2.1 Architecture
771(2)
12.2.2 Addressing
773(1)
12.2.3 Execution and speed
773(1)
12.2.4 Instruction set and programming
774(3)
12.2.5 Input and output
777(4)
12.2.6 Clock and timers
781(2)
12.2.7 Registers
783(1)
12.2.8 Memory
783(2)
12.2.9 Power
785(4)
12.2.10 Other peripherals and functionalities
789(1)
12.2.11 Programs and programmability
790(1)
12.3 General requirements for interfacing sensors and actuators
790(19)
12.3.1 Signal level
791(1)
12.3.2 Impedance
792(4)
12.3.3 Frequency and frequency response
796(2)
12.3.4 Input signal conditioning
798(8)
12.3.5 Output signals
806(3)
12.4 Errors
809(11)
12.4.1 Resolution errors
809(3)
12.4.2 Computation errors
812(5)
12.4.3 Sampling and quantization errors
817(1)
12.4.4 Conversion errors
818(2)
12.5 Problems
820(13)
Appendix A Least squares polynomials and data fitting
833(4)
A.1 Linear least square data fitting
833(2)
A.2 Parabolic least squares fit
835(2)
Appendix B Thermoelectric reference tables
837(16)
B.1 Type J thermocouples (iron/constantan)
837(2)
B.2 Type K thermocouples (chromel/alumel)
839(2)
B.3 Type T thermocouples (copper/constantan)
841(2)
B.4 Type E thermocouples (chromel/constantan)
843(2)
B.5 Type N thermocouples (nickel/chromium--silicon)
845(2)
B.6 Type B thermocouples (platinum [ 30%]/rhodium--platinum)
847(1)
B.7 Type R thermocouples (platinum [ 13%]/rhodium--platinum)
848(3)
B.8 Type S thermocouples (platinum [ 10%]/rhodium--platinum)
851(2)
Appendix C Computation on microprocessors
853(10)
C.1 Representation of numbers on microprocessors
853(3)
C.1.1 Binary numbers: unsigned integers
853(1)
C.1.2 Signed integers
854(1)
C.1.3 Hexadecimal numbers
855(1)
C.2 Integer arithmetic
856(4)
C.2.1 Addition and subtraction of binary integers
856(1)
C.2.2 Multiplication and division
857(3)
C.3 Fixed point arithmetic
860(3)
Answers to problems 863(18)
Index 881
Nathan Ida is Distinguished Professor of Electrical and Computer Engineering at the University of Akron, USA. He teaches electromagnetics, antenna theory, electromagnetic compatibility, sensing and actuation, and computational methods and algorithms. His research interests are various but include numerical modelling of electromagnetic fields. He serves as Editor in Chief for Sensing and Imaging and is a board member of the IET International Book Series on Sensors.