Muutke küpsiste eelistusi

E-raamat: SenticNet Sentiment Lexicon: Exploring Semantic Richness in Multi-Word Concepts

  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The research and its outcomes presented in this book, is about lexicon-based sentiment analysis. It uses single-, and multi-word concepts from the SenticNet sentiment lexicon as the source of sentiment information for the purpose of sentiment classification.In 6 chapters the book sheds light on the comparison of sentiment classification accuracy between single-word and multi-word concepts, for which a bespoke sentiment analysis system developed by the author was used.This book will be of interest to students, educators and researchers in the field of Sentic Computing.

1. Introduction1.1 Sentiment in Opinionated Text1.2 Background1.3 Research Problem2. Sentiment Analysis2.1 Sentiment Analysis Challenges2.2 Levels of Analysis2.3 Supervised vs. Unsupervised Sentiment Analysis2.4 Linguistics-based Sentiment Analysis2.5 Lexicon-based Sentiment Analysis2.6 Conclusion3. SenticNet3.1 The Common Sense Nature of SenticNet Knowledge3.2 A Seminal Approach to Concept-based Sentiment Analysis3.3 Producing SenticNet3.4 SenticNet Processes3.5 SenticNet Knowledge: Encoding3.6 SenticNet Access Methods3.7 SenticNet in Numbers3.7.1 Concept Types: Number of Words3.7.2 Analysis of Polarity Values: Single-Word vs. Multi-Word Concepts3.8 Conclusion4. Unsupervised Sentiment Classification4.1 Datasets4.2 Classification Design and Implementation4.2.1 Overview4.2.2 Sentiment Classification Process4.2.3 Polarity Value Thresholds4.2.4 Implementation4.3 Conclusion5. Evaluation5.1 Classification Performance5.1.1 Research Question5.1.2 Quali

tative Differences Between the Datasets5.1.3 SenticNet5.1.4 Sentiment Analysis System5.1.5 Sentiment Classification Design5.2 Limitations5.3 Conclusions6. Conclusion6.1 Future Work6.2 Final RemarksIndex
1 Introduction
1(6)
1.1 Sentiment in Opinionated Text
1(2)
1.2 Background
3(2)
1.3 Research Problem
5(2)
References
6(1)
2 Sentiment Analysis
7(10)
2.1 Sentiment Analysis Challenges
8(2)
2.2 Levels of Analysis
10(1)
2.3 Supervised Versus Unsupervised Sentiment Analysis
10(1)
2.4 Linguistics-Based Sentiment Analysis
11(1)
2.5 Lexicon-Based Sentiment Analysis
12(2)
2.6 Conclusion
14(3)
References
15(2)
3 SenticNet
17(16)
3.1 The Common Sense Nature of SenticNet Knowledge
18(1)
3.2 A Seminal Approach to Concept-Based Sentiment Analysis
19(1)
3.3 Producing SenticNet
20(3)
3.4 SenticNet Processes
23(1)
3.5 SenticNet Knowledge: Encoding
24(1)
3.6 SenticNet Access Methods
25(1)
3.7 SenticNet in Numbers
26(4)
3.7.1 Concept Types: Number of Words
26(1)
3.7.2 Analysis of Polarity Values: Single-Word Versus Multi-word Concepts
27(2)
3.7.3 Most Common Part-of-Speech Classes
29(1)
3.8 Conclusion
30(3)
References
30(3)
4 Unsupervised Sentiment Classification
33(12)
4.1 Datasets
33(1)
4.2 Classification Design and Implementation
34(8)
4.2.1 Overview
34(1)
4.2.2 Sentiment Classification Process
35(1)
4.2.3 Polarity Value Thresholds
35(3)
4.2.4 Implementation
38(4)
4.3 Conclusion
42(3)
References
42(3)
5 Evaluation
45(6)
5.1 Classification Performance
45(2)
5.2 Research Question
47(1)
5.3 Qualitative Differences Between the Datasets
47(1)
5.4 SenticNet
48(1)
5.5 Sentiment Analysis System
49(1)
5.6 Sentiment Classification Design
49(1)
5.7 Limitations
49(1)
5.8 Conclusions
50(1)
6 Conclusion
51(4)
6.1 Conclusion
51(1)
6.2 Future Work
52(1)
6.3 Final Remarks
52(3)
Reference
53(2)
Index 55