Muutke küpsiste eelistusi

E-raamat: Set Theory-An Operational Approach: An Operational Approach

  • Formaat: 304 pages
  • Ilmumisaeg: 23-Mar-2022
  • Kirjastus: Taylor & Francis Ltd
  • Keel: eng
  • ISBN-13: 9781351416849
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 64,99 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 304 pages
  • Ilmumisaeg: 23-Mar-2022
  • Kirjastus: Taylor & Francis Ltd
  • Keel: eng
  • ISBN-13: 9781351416849
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Sanchis (computer and information science, Syracuse U.) introduces an approach to set theory that avoids the existential axioms associated with traditional Zermalo-Fraenkel set theory, and endeavors to provide both a foundation for set theory and a practical approach to learning the subject. He addresses professionals and graduate students of mathematical logic, philosophy of mathematics, and theoretical computer science. Double spaced. Annotation c. by Book News, Inc., Portland, Or.

Presents a novel approach to set theory that is entirely operational. This approach avoids the existential axioms associated with traditional Zermelo-Fraenkel set theory, and provides both a foundation for set theory and a practical approach to learning the subject.

Presents a novel approach to set theory that is entirely operational. This approach avoids the existential axioms associated with traditional Zermelo-Fraenkel set theory, and provides both a foundation for set theory and a practical approach to
Preface xiii
CHAPTER 1 Operations and Predicates
1(22)
1.1 The System G
2(3)
1.2 Basic Rules
5(4)
1.3 Initial Rules
9(3)
1.4 Substitution
12(2)
1.5 Logical Rules
14(2)
1.6 Basic Terms
16(5)
1.7 Notes
21(2)
CHAPTER 2 Replacement
23(28)
2.1 The Replacement Rule
23(8)
2.2 Extensional Predicates
31(2)
2.3 Relations and Functions
33(3)
2.4 Definition by Cases and Local Abstraction
36(3)
2.5 Local Universes
39(8)
2.6 Notes
47(4)
CHAPTER 3 Set Induction
51(26)
3.1 Induction Rule
51(13)
3.2 Discussion
64(4)
3.3 Extensional Induction
68(6)
3.4 Notes
74(3)
CHAPTER 4 Applications
77(22)
4.1 Finite Sets
77(9)
4.2 Natural Numbers
86(7)
4.3 Well-Founded Relations
93(3)
4.4 Notes
96(3)
CHAPTER 5 Set Recursion
99(26)
5.1 Recursion
99(4)
5.2 Rank
103(4)
5.3 Counting
107(3)
5.4 Numerical Recursion
110(5)
5.5 Collapsing
115(3)
5.6 Recursion in a Local Universe
118(5)
5.7 Notes
123(2)
CHAPTER 6 Ordinals
125(32)
6.1 Ordinal Induction
125(5)
6.2 Infimum and Supremum
130(4)
6.3 Ordering
134(7)
6.4 Ordinal Recursion
141(5)
6.5 Bounded Minimalization
146(4)
6.6 Ordinal Counting
150(2)
6.7 A Pairing Operation
152(4)
6.8 Notes
156(1)
CHAPTER 7 Omega
157(20)
7.1 The Set Omega
157(6)
7.2 Local Induction and Normal Operations
163(10)
7.3 Hereditarily Finite Sets
173(2)
7.4 Notes
175(2)
CHAPTER 8 Power-Set and Cardinals
177(22)
8.1 Ordinal Permutations
177(6)
8.2 Local Induction Revisited
183(4)
8.3 Power-Set
187(3)
8.4 Cardinals
190(6)
8.5 Notes
196(3)
CHAPTER 9 Formalization: Classical Logic
199(20)
9.1 Syntax and Axioms
200(3)
9.2 Sequents
203(5)
9.3 Derivations
208(3)
9.4 Local Reduction
211(5)
9.5 Notes
216(3)
CHAPTER 10 Formalization: Intuitionistic Logic
219(20)
10.1 The Intuitionistic Calculus
220(7)
10.2 Classical Reduction
227(6)
10.3 Local Reduction
233(4)
10.4 Notes
237(2)
Appendix A Enumeration 239(26)
A.1 Ordinal Enumeration 240(4)
A.2 Countable Sets 244(11)
A.3 Hereditarily Countable Sets 255(6)
A.4 Induction Revisited 261(2)
A.5 Notes 263(2)
Bibliography 265(4)
Primitive Rules and Pages Where Introduced 269(2)
Formal Definitions and Pages Where Introduced 271(4)
Index 275
Luis E. Sanchis is Professor Emeritius in the School of Computer and Information Science of Syracuse University, New York.