Muutke küpsiste eelistusi

E-raamat: Several Complex Variables with Connections to Algebraic Geometry and Lie Groups

  • Formaat - PDF+DRM
  • Hind: 118,01 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Several Complex Variables with Connections to Algebraic Geometry and Lie Groups

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This text presents an integrated development of the theory of several complex variables and complex algebraic geometry, leading to proofs of Serre's celebrated GAGA theorems relating the two subjects, and including applications to the representation theory of complex semisimple Lie groups. It includes a thorough treatment of the local theory using the tools of commutative algebra, an extensive development of sheaf theory and the theory of coherent analytic and algebraic sheaves, proofs of the main vanishing theorems for these categories of sheaves, and a complete proof of the finite dimensionality of the cohomology of coherent sheaves on compact varieties. The vanishing theorems have a wide variety of applications and these are covered in detail. Of particular interest are the last three chapters, which are devoted to applications of the preceding material to the study of the structure and representations of complex semisimple Lie groups. Included are introductions to harmonic analysis, the Peter-Weyl theorem, Lie theory and the structure of Lie algebras, semisimple Lie algebras and their representations, algebraic groups and the structure of complex semisimple Lie groups. All of this culminates in Milicic's proof of the Borel-Weil-Bott theorem, which makes extensive use of the material developed earlier in the text. There are numerous examples and exercises in each chapter. This modern treatment of a classic point of view would be an excellent text for a graduate course on several complex variables, as well as a useful reference for the expert.

Arvustused

The book can serve as an excellent text for a graduate course on modern methods of complex analysis, as well as a useful reference for those working in analysis."" - Zentralblatt MATH

""The author succeeded in making the text as self-contained as possible by giving results and proofs of many results from this background material ... This very well-written book is a pleasant text for any graduate student and a base for any lecture course on several complex variables."" - Mathematical Reviews

Chapters
Chapter
1. Selected problems in one complex variable
Chapter
2. Holomorphic functions of several variables
Chapter
3. Local rings and varieties
Chapter
4. The Nullstellensatz
Chapter
5. Dimension
Chapter
6. Homological algebra
Chapter
7. Sheaves and sheaf cohomology
Chapter
8. Coherent algebraic sheaves
Chapter
9. Coherent analytic sheaves
Chapter
10. Stein spaces
Chapter
11. Frechet sheaves-Cartan's theorems
Chapter
12. Projective varieties
Chapter
13. Algebraic vs. analytic-Serre's theorems
Chapter
14. Lie groups and their representations
Chapter
15. Algebraic groups
Chapter
16. The Borel-Weil-Bott theorem
Joseph L. Taylor, University of Utah, Salt Lake City, UT.