|
1 A Variational Model on Labelled Graphs with Cusps and Crossings |
|
|
1 | (24) |
|
1.1 The Reconstruction Problem |
|
|
1 | (3) |
|
1.2 The Mumford--Shah Model |
|
|
4 | (2) |
|
1.3 The Nitzberg--Mumford Model |
|
|
6 | (5) |
|
1.4 Other Curvature-Depending Functionals |
|
|
11 | (2) |
|
1.5 The Variational Model on Labelled Graphs |
|
|
13 | (12) |
|
|
21 | (4) |
|
2 Stable Maps and Morse Descriptions of an Apparent Contour |
|
|
25 | (28) |
|
|
25 | (6) |
|
2.2 Stable Maps from a Two-Manifold to the Plane |
|
|
31 | (5) |
|
|
36 | (5) |
|
2.4 Ambient Isotopic and Diffeomorphically Equivalent Apparent Contours |
|
|
41 | (1) |
|
2.5 Morse Descriptions of an Apparent Contour |
|
|
42 | (11) |
|
2.5.1 Genericity of Morse Lines in Case of No Cusps |
|
|
44 | (1) |
|
2.5.2 Morse Lines in Case of Cusps: Markers |
|
|
45 | (3) |
|
2.5.3 The Morse Description |
|
|
48 | (2) |
|
2.5.4 Recovering the Shape from a Morse Description |
|
|
50 | (1) |
|
|
51 | (2) |
|
3 Apparent Contours of Embedded Surfaces |
|
|
53 | (20) |
|
3.1 Three-Dimensional Scenes |
|
|
53 | (2) |
|
|
54 | (1) |
|
3.2 Apparent Contours of Embedded Surfaces |
|
|
55 | (4) |
|
|
59 | (5) |
|
3.4 Labelling an Apparent Contour: The Function dΣ |
|
|
64 | (5) |
|
3.5 Ambient Isotopic and Diffeomorphically Equivalent Labelled Apparent Contours |
|
|
69 | (1) |
|
|
70 | (3) |
|
|
72 | (1) |
|
4 Solving the Completion Problem |
|
|
73 | (28) |
|
4.1 Some Concepts from Graph Theory |
|
|
73 | (4) |
|
4.1.1 Contour Graphs and Visible Contour Graphs |
|
|
75 | (2) |
|
4.2 Complete Contour Graphs and Labelling |
|
|
77 | (3) |
|
4.3 Statement of the Completion Theorem |
|
|
80 | (2) |
|
4.4 Morse Descriptions of a Visible Contour Graph |
|
|
82 | (2) |
|
|
84 | (1) |
|
4.5 Proof of the Completion Theorem |
|
|
84 | (12) |
|
4.5.1 Analysis at the Global Maximum and at Local Maxima |
|
|
86 | (1) |
|
4.5.2 Analysis at Terminal Points |
|
|
87 | (1) |
|
4.5.3 Analysis at T-Junctions |
|
|
88 | (4) |
|
4.5.4 Analysis at Local Minima and at the Global Minimum |
|
|
92 | (4) |
|
|
96 | (5) |
|
|
100 | (1) |
|
5 Topological Reconstruction of a Three-Dimensional Scene |
|
|
101 | (30) |
|
5.1 Statement of the Reconstruction Theorem |
|
|
101 | (2) |
|
5.1.1 Depth-Equivalent Scenes |
|
|
102 | (1) |
|
|
103 | (15) |
|
|
104 | (4) |
|
5.2.2 Smooth Local Embedding of T in R3 |
|
|
108 | (4) |
|
5.2.3 Smooth Global Embedding of M in R3 |
|
|
112 | (5) |
|
5.2.4 Definition of the 3D-Shape |
|
|
117 | (1) |
|
|
118 | (13) |
|
|
125 | (3) |
|
|
128 | (3) |
|
6 Completeness of Reidemeister-Type Moves on Labelled Apparent Contours |
|
|
131 | (26) |
|
6.1 Moves on a Labelled Apparent Contour |
|
|
133 | (3) |
|
6.1.1 List of All Simple Rules |
|
|
134 | (2) |
|
6.2 Stratifications and Stratified Morse Functions |
|
|
136 | (4) |
|
6.2.1 Stratifications Induced by a Stable Map |
|
|
137 | (3) |
|
|
140 | (2) |
|
|
142 | (5) |
|
6.5 Proof of the Completeness Theorem |
|
|
147 | (6) |
|
6.6 Completeness of Moves |
|
|
153 | (4) |
|
|
155 | (2) |
|
7 Invariants of an Apparent Contour |
|
|
157 | (38) |
|
7.1 Definition of B(appcon(φ)) |
|
|
158 | (2) |
|
7.2 Definition of BL(appcon(φ)) |
|
|
160 | (2) |
|
7.3 Coincidence Between B(appcon(φ)) and BL(appcon(φ)) |
|
|
162 | (9) |
|
7.3.1 Proof of Coincidence Up to a Constant |
|
|
163 | (4) |
|
7.3.2 Proof of Coincidence |
|
|
167 | (4) |
|
7.4 Euler--Poincare Characteristic of δE |
|
|
171 | (5) |
|
7.5 Cell Complexes and Fundamental Groups |
|
|
176 | (5) |
|
|
178 | (1) |
|
|
179 | (2) |
|
7.6 Alexander Polynomials and Invariants of Fundamental Groups |
|
|
181 | (2) |
|
7.7 Free Differential Calculus |
|
|
183 | (6) |
|
7.8 Links with Two Components: Deficiency One |
|
|
189 | (2) |
|
7.9 Surfaces with Genus 2: Deficiency Two |
|
|
191 | (4) |
|
|
192 | (3) |
|
|
195 | (14) |
|
8.1 Embedding Sign of a Cusp |
|
|
196 | (2) |
|
8.2 Connectable Cusps in an Open Set |
|
|
198 | (3) |
|
8.3 Statement of the Elimination Theorem |
|
|
201 | (1) |
|
8.4 Proof of the Elimination Theorem |
|
|
202 | (4) |
|
8.5 Application to Closed Embedded Surfaces |
|
|
206 | (3) |
|
|
207 | (2) |
|
|
209 | (16) |
|
|
209 | (3) |
|
9.2 Encoding a Morse Description of the Visible Contour |
|
|
212 | (2) |
|
9.2.1 Encoding the Morse Events |
|
|
213 | (1) |
|
9.2.2 Implicit Orientation |
|
|
213 | (1) |
|
9.2.3 The "e" Region Marking |
|
|
214 | (1) |
|
|
214 | (1) |
|
9.4 Encoding a Morse Description of the Constructed Apparent Contour |
|
|
215 | (1) |
|
|
216 | (9) |
|
|
223 | (2) |
|
10 The Program "Appcontour": User's Guide |
|
|
225 | (98) |
|
10.1 An Overview of the Software |
|
|
226 | (4) |
|
|
230 | (5) |
|
|
231 | (1) |
|
10.2.2 Describing a Region |
|
|
232 | (2) |
|
10.2.3 Completeness of the Region Description |
|
|
234 | (1) |
|
10.3 Encoding an Apparent Contour with Labelling |
|
|
235 | (5) |
|
10.3.1 Region Description as a Stream of Characters |
|
|
235 | (1) |
|
|
236 | (2) |
|
|
238 | (2) |
|
10.4 The Rules (Reidemeister-Type Moves) |
|
|
240 | (8) |
|
|
240 | (4) |
|
10.4.2 A Nonlocal Effect of the B Rule |
|
|
244 | (1) |
|
|
244 | (3) |
|
|
247 | (1) |
|
10.5 Surgeries on Apparent Contours |
|
|
248 | (1) |
|
|
248 | (1) |
|
10.5.2 Horizontal Surgery |
|
|
249 | (1) |
|
10.6 Canonical Description and Comparison |
|
|
249 | (9) |
|
10.6.1 On the Isomorphism Problem for Graphs |
|
|
250 | (1) |
|
10.6.2 The "Regions" Graph: R-Graph |
|
|
250 | (2) |
|
10.6.3 The Depth-First Search of an R-Graph |
|
|
252 | (1) |
|
10.6.4 The Canonization Procedure |
|
|
253 | (5) |
|
10.6.5 Comparison of Apparent Contours |
|
|
258 | (1) |
|
10.7 Fundamental Groups and Cell Complexes |
|
|
258 | (16) |
|
10.7.1 Computing the Euler--Poincare Characteristic and the Number of Connected Components |
|
|
259 | (1) |
|
10.7.2 Fundamental Groups |
|
|
260 | (2) |
|
10.7.3 Invariants of Finitely Presented Groups and the Alexander Polynomial |
|
|
262 | (5) |
|
10.7.4 Alexander Polynomials and Alexander Ideals in Two Indeterminates |
|
|
267 | (7) |
|
|
274 | (1) |
|
|
275 | (5) |
|
10.9.1 Euler--Poincare Characteristic |
|
|
275 | (1) |
|
10.9.2 Bennequin Invariant |
|
|
275 | (1) |
|
10.9.3 Examples of Invariants Computation |
|
|
276 | (4) |
|
10.10 Contour Reference Guide |
|
|
280 | (13) |
|
10.10.1 Informational Commands |
|
|
280 | (4) |
|
10.10.2 Operating Commands |
|
|
284 | (3) |
|
10.10.3 Conversion and Standardization Commands |
|
|
287 | (1) |
|
10.10.4 Cell Complex and Fundamental Group Commands |
|
|
288 | (1) |
|
10.10.5 Options Specific to Fundamental Group Computations |
|
|
289 | (1) |
|
|
290 | (1) |
|
10.10.7 Direct Input of a Finitely Presented Group or an Alexander Ideal |
|
|
291 | (2) |
|
10.11 Showcontour Reference Guide |
|
|
293 | (3) |
|
10.11.1 Producing a Proper Morse Description |
|
|
293 | (1) |
|
10.11.2 From the Morse description to a polygonal drawing |
|
|
294 | (1) |
|
10.11.3 Discrete Optimization of the Polygonal Drawing |
|
|
294 | (1) |
|
10.11.4 Dynamic Smoothing of the Polygonal |
|
|
295 | (1) |
|
10.12 Using contour in Scripts |
|
|
296 | (4) |
|
10.12.1 contour_interact.sh |
|
|
296 | (1) |
|
10.12.2 contour_describe.sh |
|
|
297 | (2) |
|
10.12.3 contour_transform.sh |
|
|
299 | (1) |
|
10.13 Example: knotted Surface of Genus 2 |
|
|
300 | (1) |
|
10.14 Example: Knots in a Solid Torus |
|
|
301 | (3) |
|
10.15 Example: Klein Bottle and the "House with Two Rooms" |
|
|
304 | (5) |
|
10.16 Example: Mixed Internal/External Knot |
|
|
309 | (3) |
|
10.17 Using appcontour on Apparent Contours Without Labelling |
|
|
312 | (11) |
|
|
312 | (1) |
|
|
313 | (1) |
|
|
313 | (1) |
|
|
314 | (1) |
|
|
315 | (2) |
|
10.A Appendix: Practical Canonization of Laurent Polynomials |
|
|
317 | (1) |
|
10.A.1 One-Dimensional Support |
|
|
318 | (1) |
|
10.A.2 Two-Dimensional Support |
|
|
318 | (3) |
|
|
321 | (2) |
|
11 Variational Analysis of the Model on Labelled Graphs |
|
|
323 | (32) |
|
11.1 The Action Functional |
|
|
324 | (3) |
|
11.1.1 Graphs with Cusps and Curvature in Lp |
|
|
324 | (1) |
|
|
325 | (1) |
|
11.1.3 A Notion of Convergence |
|
|
326 | (1) |
|
11.2 Lower Semicontinuity |
|
|
327 | (5) |
|
11.3 On the Lower Semicontinuous Envelope of the Action |
|
|
332 | (23) |
|
11.3.1 Limits of Labellings |
|
|
335 | (2) |
|
11.3.2 Sufficient Conditions: An Example |
|
|
337 | (5) |
|
11.A Appendix A: Systems of Curves |
|
|
342 | (1) |
|
11.A.1 Curves of Class pwrpc |
|
|
342 | (2) |
|
|
344 | (1) |
|
11.A.3 Parametrizations of Complete Contour Graphs |
|
|
345 | (1) |
|
11.B Appendix B: Convergence and Compactness of Systems of Curves |
|
|
346 | (1) |
|
|
347 | (6) |
|
|
353 | (2) |
Nomenclature |
|
355 | (6) |
Index |
|
361 | |