Muutke küpsiste eelistusi

E-raamat: Signal Extraction: Efficient Estimation, 'Unit Root'-Tests and Early Detection of Turning Points

  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The material contained in this book originated in interrogations about modern practice in time series analysis. Why do we use models optimized with respect to one-step ahead foreca- ing performances for applications involving multi-step ahead forecasts? Why do we infer 'long-term' properties (unit-roots) of an unknown process from statistics essentially based on short-term one-step ahead forecasting performances of particular time series models? Are we able to detect turning-points of trend components earlier than with traditional signal extraction procedures? The link between 'signal extraction' and the first two questions above is not immediate at first sight. Signal extraction problems are often solved by su- ably designed symmetric filters. Towards the boundaries (t = 1 or t = N) of a time series a particular symmetric filter must be approximated by asymm- ric filters. The time series literature proposes an intuitively straightforward solution for solving this problem: Stretch the observed time series by forecasts generated by a model. Apply the symmetric filter to the extended time series. This approach is called 'model-based'. Obviously, the forecast-horizon grows with the length of the symmetric filter. Model-identification and estimation of unknown parameters are then related to the above first two questions. One may further ask, if this approximation problem and the way it is solved by model-based approaches are important topics for practical purposes? Consider some 'prominent' estimation problems: The determination of the seasonally adjusted actual unemployment rate.

Arvustused

From the reviews:









"The aim of the author is to describe established procedures which are implemented in widely used software packages. The book can be of great interest for all specialists working in the area of nonlinear systems state and parameter estimation and identification. It will be of significant benefit for time series estimation and prediction in many applications." (Tzvetan Semerdjiev, Zentralblatt MATH, Vol. 1053, 2005)

Part I Theory
Introduction
3(14)
Overview
3(4)
A General Model-Based-Approach
7(3)
An Identification Problem
10(2)
The Direct Filter Approach
12(2)
Summary
14(3)
Model-Based Approaches
17(28)
Introduction
17(1)
The Beveridge-Nelson Decomposition
18(1)
The Canonical Decomposition
19(17)
An Illustrative Example
20(4)
The Airline-Model
24(5)
An Example
29(4)
The Revision Error Variance
33(2)
Concluding Remarks
35(1)
Structural Components Model
36(3)
Census X-12-Arima
39(6)
QMP-ZPC Filters
45(20)
Filters : Definitions and Concepts
45(6)
A Restricted Arma Filter Class: QMP-filters
51(3)
ZPC-Filters
54(11)
The Periodogram
65(26)
Spectral Decomposition
65(4)
Convolution Theorem
69(7)
The Periodogram for Integrated Processes
76(15)
Integrated Processes of Order One
76(3)
The Periodogram for I(2)-Processes
79(12)
Direct Filter Approach (DFA)
91(56)
Overview
92(2)
Consistency (Stationary MA-Processes)
94(8)
Consistency (Integrated Processes)
102(10)
Conditional Optimization
112(3)
Efficiency
115(5)
Inference Under `Conditional' Stationarity
120(9)
The Asymptotic Distribution of the Parameters of the `Linearized' DFA
121(6)
Spurious Decrease of the Optimization Criterion
127(2)
Testing for Parameter Constraints
129(1)
Inference : Unit-Roots
129(16)
I(1)-Process
130(13)
I(2)-Process
143(2)
Links Between the DFA and the MBA
145(2)
Finite Sample Problems and Regularity
147(20)
Regularity and Overfitting
148(3)
Filter Selection Criterion
151(3)
Overview
151(1)
The MC-Criterion
152(2)
Cross-Validation
154(1)
A Singularity-Penalty
155(4)
Variable Frequency Sampling
159(8)
Part II Empirical Results
Empirical Comparisons : Mean Square Performance
167(46)
General Framework
167(2)
A Simulation Study
169(17)
Airline-Model
170(6)
`Quasi'-Airline Model
176(3)
Stationary Input Signals
179(3)
Conclusions
182(4)
`Real-World' Time Series
186(27)
Mean-Square Approximation of the `Ideal' Trend
189(13)
Mean-Square Approximation of the `Canonical Trend'
202(4)
Mean Square Approximation of the `Canonical Seasonal Adjustment' Filter
206(7)
Empirical Comparisons : Turning Point Detection
213(12)
Turning Point Detection for the `Ideal' Trend
214(8)
Series Linearized by Tramo
215(4)
Series Linearized by X-12-Arima
219(3)
Turning Point Detection for the Canonical Trend
222(3)
Conclusion
225(4)
A Decompositions of Stochastic Processes
229(6)
Weakly Stationary Processes of Finite Variance
229(4)
Spectral Decomposition and Convolution Theorem
229(2)
The Wold Decomposition
231(2)
Non-Stationary Processes
233(2)
B Stochastic Properties of the Periodogram
235(20)
Periodogram for Finite Variance Stationary Processes
235(8)
Periodogram for Infinite Variance Stationary Processes
243(3)
Moving Average Processes of Infinite Variance
243(1)
Autocorrelation Function, Normalized Spectral Density and (Self) Normalized Periodogram
244(2)
The Periodogram for Integrated Processes
246(9)
C A `Least-Squares' Estimate
255(14)
Asymptotic Distribution of the Parameters
255(11)
A Generalized Information Criterion
266(3)
D Miscellaneous
269(2)
Initialization of Arma-Filters
269(2)
E Non-Linear Processes
271(4)
References 275