ei ole lubatud
ei ole lubatud
Digitaalõiguste kaitse (DRM)
Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).
Vajalik tarkvara
Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)
PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )
Seda e-raamatut ei saa lugeda Amazon Kindle's.
Part I: General Topics.
1. An Overview of 60 Years of Progress on Signal/Image Processing for Remote Sensing.
2. Proven Approaches of Using Innovative High-Performance Computing Architectures in Remote Sensing. Part II: Signal Processing for Remote Sensing.
3. Machine Learning Techniques for Geophysical Parameter Retrievals.
4. Subsurface Inverse-Profiling and Imaging Using Stochastic Optimization Techniques.
5. Close and Remote GPR Surveys via Microwave Tomography, State of Art and Perspectives.
6. Polarimetric SAR Signatures of Complex Scene - A Simulation Study.
7. Machine Learning for Arctic Sea Physical Properties Estimation Using Dual-Polarimetric SAR Data.
8. Riemannian Clustering of Polarimetric SAR Data Using the Polar Decomposition.
9. Seismic Velocity Picking Using Hopfield Neural Network.
10. Expanded Radial Basis Function Network with Proof of Hidden Node Number by Recurrence Relation for Well Log Data Inversion. Part III: Image Processing for Remote Sensing.
11. Convolutional Neural Networks Meet Markov Random Fields for Semantic Segmentation of Remote Sensing Images.
12. Deep Learning Methods for Satellite Image Super Resolution.
13. Machine learning in Remote Sensing.
14. Robust Training of Deep Neural Networks with Weak Labeled Data.
15. Sementic Segmentation with otbtf and keras.
16. Performance of a Diffusion Model for Instance Segmentation in Remote Sensing Imagery.
17. Land Cover Classification Using Attention Based Multi Model Image Fusion: An Explainable Analysis
18. FPGA Compressive Sensing Method Applied to Hyperspectral Imagery.
19. Large-Scale Fine-Grained Change Detection from Multisensory Satellite Images.
20. Change Detection on Graphs: Exploiting Graph Structure from Bi-temporal Satellite Imagery.
21. Target Detection in Hyperspectral Imaging Using Neural Networks.