Muutke küpsiste eelistusi

E-raamat: Signal Processing, Speech and Music

Edited by
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 62,39 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This text offers a comprehensive introduction to the theory of signals and systems and the way in which this theory is applied to the study of acoustic communication (both digital and analogue): the development of systems for producing, transmitting and processing speech and music signals. The book is designed to make the reader acquainted with the refined and powerful theoretical and practical tools available for this purpose.;The book teaches understanding of such concepts as amplitude and phase spectrum, impulse and frequency response, amplitude and frequency modulation, as well as such methods for the analysis and synthesis of speech and musical systems like LPC and wave shaping. The use of complex numbers is avoided and a knowledge of mathematics beyond that of secondary school level is not necessary.
Preface v
CHAPTER 1 Acoustical Communication
1(6)
CHAPTER 2 Functions
7(54)
2.1 Registrations and signal functions
7(8)
2.2 Exponential and logarithmic functions
15(8)
A. The definition of the exponential function
15(1)
B. Applications of exponential functions
16(3)
1. The energy of a signal function
16(1)
2. The notation of numbers
17(1)
3. Exponential decay
18(1)
4. Well-tempered tuning
19(1)
C. The logarithm
19(1)
D. An important application of the logarithm: the decibel
20(3)
2.3 Differentiating functions
23(10)
A. The differential quotient
23(3)
B. Displacement, speed and acceleration
26(1)
C. Rules for differentiation (1)
27(1)
D. Differentiation without differential quotient
28(2)
1. Differentiating network
28(1)
2. Differentiating numerically
29(1)
E. Rules for differentiation (2)
30(3)
2.4 Equations
33(4)
A. Algebraic equations
33(1)
B. Difference and differential equations
34(3)
2.5 The integration of functions
37(5)
A. Integral and mean value
37(3)
B. Rules, integrating network, integrating numerically
40(1)
C. The RMS value of an asymmetrical signal
41(1)
2.6 Sinusoidal vibrations and trigonometric functions
42(15)
A. Sine function and sinusoidal movement
42(4)
B. Time-discrete sine functions
46(2)
C. The importance of sinusoidal vibrations
48(1)
D. Trigonometric functions
48(4)
E. Sinusoidal signals
52(5)
2.7 Problems
57(4)
CHAPTER 3 The Harmonic Oscillator
61(38)
3.1 Undamped vibrations - the time-continuous case
61(8)
A. The vibrating string; equation and solution
61(3)
B. Other harmonic oscillators
64(5)
1. Systems with a constant vibration period
64(1)
2. The Helmholtz resonator
65(2)
3. The LC-circuit
67(2)
3.2 The undamped vibration - the time-discrete case
69(5)
A. A simple programmed sinewave oscillator
69(1)
B. The `look-up table' generator
69(1)
C. A digital sinewave oscillator with feedback
70(4)
3.3 Damped vibrations - the time-continuous case
74(6)
A. Equation and solution
74(2)
B. The damping factor
76(1)
C. Electrical and mechanical systems
77(3)
3.4 Damped vibrations - the time-discrete case
80(2)
3.5 Forced vibrations - the time-continuous case
82(11)
A. The equation and the solution
82(3)
B. The amplitude of the forced vibration
85(1)
C. Analysis of the filter behaviour
86(3)
1. The Q-factor
86(1)
2. Time-domain interpretation of Q
87(1)
3. Frequency domain interpretation of Q
87(2)
D. Global characterization of the resonance curve
89(1)
E. The phase behaviour
90(1)
F. Energy dissipation
90(3)
3.6 Forced vibrations in a time-discrete system
93(3)
A. Equation and Solution
93(1)
B. A digital filter
94(2)
3.7 Problems
96(3)
CHAPTER 4 Signal Functions in the Time and Frequency Domains
99(78)
4.1 The computer; binary number representation and programming
99(9)
4.2 Time-discrete signal functions
108(10)
A. Linear Pulse Code Modulation
108(6)
1. Analog to digital conversion
108(2)
2. Quantization noise
110(3)
3. Digital-to-Analog Conversion
113(1)
B. Other conversion systems
114(4)
1. Compression/expansion
114(2)
2. Predictive coding
116(2)
4.3 The Fourier Transform
118(39)
A. The relation between arbitrary and sinusoidal functions
118(3)
B. The constant term
121(1)
C. Determination of the Fourier coefficients
121(7)
D. The importance of the Fourier Transform
128(1)
E. Practical applications
128(1)
F. Fourier analysis of periodic signals
129(10)
1. Amplitude and phase spectrum
129(2)
2. The power spectrum
131(1)
3. Determination of the amplitude and phase spectrum of periodic signals
132(7)
G. Fourier analysis independent of (possible) periodicity
139(11)
1. Fourier analysis of time-continuous, non-periodic signals
139(5)
2. Fourier analysis of time-discrete signals with `hidden' periodicities
144(6)
H. The Fast Fourier Transform
150(4)
1. Fourier analysis with the help of measuring apparatus
154(3)
4.4 Time and frequency domain aspects of some signal-theoretical subjects
157(10)
A. The sampling theorem
157(2)
B. Digital-to-analog conversion
159(2)
C. Changing the sampling frequency
161(1)
D. Noise
162(5)
1. Time domain description
163(1)
2. Frequency domain description
164(3)
4.5 Orthogonal functions and signal transforms
167(7)
A. Vectors and functions
167(4)
B. The Walsh transform
171(3)
4.6 Problems
174(3)
CHAPTER 5 System Theory
177(26)
5.1 Classification of systems
177(6)
A. Analog and digital systems
178(1)
B. Classification based on the input/output relation
178(3)
1. Linearity
178(1)
2. Time-invariance
179(1)
3. The sine in/sine out-principle
179(2)
4. Causality
181(1)
C. Non-linear behaviour of practical linear systems
181(2)
1. Harmonic distortion
181(1)
2. Intermodulation distortion
182(1)
5.2 The description of linear systems
183(10)
A. Time domain description; impulse response and convolution
183(6)
B. Frequency domain description; the frequency response
189(1)
C. Determination of impulse and frequency response of a system
190(3)
5.3 Distortion-less linear systems
193(2)
5.4 Filters
195(5)
A. The frequency domain specification of filters
195(3)
1. The amplitude response
195(1)
2. The phase response
196(2)
B. The time domain specification of filters
198(2)
5.5 Problems
200(3)
CHAPTER 6 Systems for Sound Signal Processing
203(54)
6.1 Elementary electrical quantities, concepts and circuits
203(8)
A. Voltage, current, resistance and power
203(3)
B. Series and parallel circuits of resistors
206(1)
C. Voltage source, input and output impedance
207(4)
6.2 Linear systems with distortion-less transmission
211(13)
A. Passive, analog systems for changing the scale factor
211(2)
1. The potentiometer
211(1)
2. The transformer
212(1)
B. Active, analog systems for changing the scaling factor
213(5)
1. The amplifier
213(2)
2. Amplifier specifications
215(3)
C. Operational amplifiers
218(1)
D. Time delay unit
219(1)
E. AD- and DA-converters
220(4)
1. DA-converter
220(2)
2. AD-converter
222(2)
6.3 Filters
224(17)
A. The principle of filtering; analysis and design of filters
224(5)
B. A few linear filter and oscillator circuits
229(12)
1. Analog, passive filters
229(3)
2. Analog, active filters
232(1)
3. Digital filters
233(3)
4. Analog oscillators
236(2)
5. Noise generators
238(3)
6.4 Non-linear and time-variant systems
241(16)
A. Systems with a nonlinear transfer function
241(4)
B. Time-variant systems; amplitude and frequency modulation
245(12)
1. Amplitude modulation
246(1)
2. The spectrum of an AM-signal
247(1)
3. Amplitude modulation with a non-suppressed carrier wave
248(1)
4. Applications of amplitude modulation
249(1)
5. Amplitude demodulation
249(1)
6. Frequency modulation
250(2)
7. The periodicity of the FM-signal
252(1)
8. The spectrum of the FM-signal
253(3)
9. Applications of frequency modulation
256(1)
10. Frequency demodulation
256(1)
6.5 Problems
257(1)
CHAPTER 7 Analysis and Synthesis Techniques
257(40)
7.1 The analysis of periodicity, autocorrelation
258(9)
7.2 Cepstrum analysis
267(7)
A. Deconvolution
267(5)
B. Formant determination
272(1)
C. The excitation signal in speech synthesis
273(1)
7.3 LPC analysis and synthesis
274(11)
A. Coding the speech signal
274(5)
B. Speech analysis
279(3)
C. Speech Synthesis
282(3)
7.4 Sound synthesis
285(12)
A. Formant synthesis via the wave shape
285(1)
B. The Karplus-Strong Algorithm
286(1)
C. Synthesis with the help of orthogonal functions
287(2)
1. Fourier synthesis
288(1)
2. Walsh synthesis
288(1)
D. Non-linear synthesis via modulation
289(3)
1. Amplitude modulation
289(1)
2. Frequency modulation
290(2)
E. Discrete summation
292(1)
F. Synthesis via nonlinear distortion (wave-shaping)
293(2)
G. Granular synthesis
295(2)
7.5 Problems
297(1)
CHAPTER 8 Acoustical Communication Revisited
297(10)
8.1 The hearing organ, a linear system?
298(4)
A. Filtering and critical bandwidth
298(3)
B. Masking
301(1)
C. Non-linear distortion
301(1)
8.2 The transfer of modulation
302(2)
8.3 Perceptual coding
304(3)
References 307(4)
Appendix, Solutions to Problems 311(18)
Index 329
Stan Tempelaars