Muutke küpsiste eelistusi

E-raamat: Signal-Switchable Electrochemical Systems: Materials, Methods, and Applications

(Clarkson University, Potsdam, N.Y., USA)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 15-Jun-2018
  • Kirjastus: Blackwell Verlag GmbH
  • Keel: eng
  • ISBN-13: 9783527818778
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 143,20 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 15-Jun-2018
  • Kirjastus: Blackwell Verlag GmbH
  • Keel: eng
  • ISBN-13: 9783527818778
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Bietet einen Überblick über verschiedene elektrochemisch schaltbare Systeme und modifizierte Elektroden. Entwickelte Elektrodenschnittstellen zusammen mit unterschiedlichen, auf Signale ansprechende Materialien ermöglichen schaltbare Eigenschaften von modifizierten Elektroden.

Provides an overview of different switchable electrochemical systems and modified electrodes. Electrode interfaces functionalized with various signal-responsive materials have been designed to allow switchable properties of modified electrodes.

IntroductionMagneto-Switchable Electrodes and Electrochemical SystemsModified Electrodes and Electrochemical Systems Switchable by Temperature ChangesModified Electrodes and Electrochemical Systems Switchable by Light SignalsModified Electrodes Switchable by Applied Potentials Resulting in Electrochemical Transformations at Functional InterfacesElectrochemical Systems Switchable by pH ChangesCoupling of Switchable Electrodes and Electrochemical Processes with Biomolecular Computing SystemsBiofuel Cells with Switchable/Tunable Power Output as an Example of Implantable Bioelectronic DevicesSignal-Triggered Release of Biomolecules from Alginate-Modified ElectrodesWhat is Next? Molecular Biology Brings New IdeasSummary and Outlook: Scaling-Up the Complexity of Signal-Processing Systems and Foreseeing New ApplicationsIndex

Evgeny Katz received his Ph.D. in Chemistry from Frumkin Institute of Electrochemistry (Moscow) in 1983. He was a senior researcher in the Institute of Photosynthesis (Pushchino), Russian Academy of Sciences (1983 - 1991), a Humboldt fellow at München Technische Universität (Germany) (1992 - 1993), and a research associate professor at the Hebrew University of Jerusalem (1993 - 2006). From 2006 he is Milton Kerker Chaired Professor at the Department of Chemistry and Biomolecular Science, Clarkson University, NY (USA). He has (co)authored over 300 papers in the areas of biocomputing, bioelectronics, biosensors and biofuel cells (Hirsch-index 65). He serves as Editor-in-Chief for IEEE Sensors Journal and a member of editorial boards of many other journals.On February 10, 2011, Thomson Reuters released data identifying the world"s top 100 chemists over the past 10 years as ranked by the impact of their published research. Evgeny Katz was included in the list as No.62 from approximat

ely a million chemists indexed by Thomson Reuters.
Preface xi
1 Introduction
1(4)
References
1(4)
2 Magneto-switchable Electrodes and Electrochemical Systems
5(66)
2.1 Introduction
5(1)
2.2 Lateral Translocation of Magnetic Micro/nanospecies on Electrodes and Electrode Arrays
5(6)
2.3 Vertical Translocation of Magnetic Micro/Nanospecies to and from Electrode Surfaces
11(13)
2.4 Assembling Conducting Nanowires from Magnetic Nanoparticles in the Presence of External Magnetic Field
24(1)
2.5 Vertical Translocation of Magnetic Hydrophobic Nanoparticles to and from Electrode Surfaces
24(21)
2.6 Repositioning and Reorientation of Magnetic Nanowires on Electrode Surfaces
45(4)
2.7 Integration of Magnetic Nanoparticles into Polymer-Composite Materials
49(2)
2.8 Conclusions and Perspectives
51(3)
2.9 Appendix: Synthesis and Properties of Magnetic Particles and Nanowires
54(17)
References
62(7)
Symbols and Abbreviations
69(2)
3 Modified Electrodes and Electrochemical Systems Switchable by Temperature Changes
71(30)
3.1 Introduction
71(1)
3.2 Thermo-sensitive Polymers with Coil-to-Globule Transition
72(2)
3.3 Electrode Surfaces Modified with Thermo-sensitive Polymers for Temperature-controlled Electrochemical and Bioelectrochemical Processes
74(5)
3.4 Electrode Surfaces Modified with Multicomponent Systems Combining Thermo-sensitive Polymers with pH-, Photo- and Potential-Switchable Elements
79(14)
3.4.1 Temperature- and pH-sensitive Modified Electrodes
80(3)
3.4.2 Temperature- and Photo-sensitive Modified Electrodes
83(6)
3.4.3 Temperature-sensitive Modified Electrodes Controlled by Complex Combinations of External Signals
89(4)
3.5 Electrodes Modified with Thermo-switchable Polymer Films Containing Entrapped Metal Nanoparticles -- Inverted Temperature-dependent Switching
93(1)
3.6 Conclusions and Perspectives
94(7)
References
96(2)
Symbols and Abbreviations
98(3)
4 Modified Electrodes and Electrochemical Systems Switchable by Light Signals
101(68)
4.1 Introduction
101(2)
4.2 Diarylethene-based Photoelectrochemical Switches
103(17)
4.3 Phenoxynaphthacenequinone-based Photoelectrochemical Switches
120(5)
4.4 Azobenzene-based Photoelectrochemical Switches
125(16)
4.5 Spiropyran--merocyanine-based Photoelectrochemical Switches
141(17)
4.6 Conclusions and Perspectives
158(11)
References
159(8)
Symbols and Abbreviations
167(2)
5 Modified Electrodes Switchable by Applied Potentials Resulting in Electrochemical Transformations at Functional Interfaces
169(8)
References
175(1)
Symbols and Abbreviations
176(1)
6 Electrochemical Systems Switchable by pH Changes
177(26)
6.1 Introduction
177(1)
6.2 Monolayer Modified Electrodes with Electrochemical and Electrocatalytic Activity Controlled by pH Value
178(1)
6.3 Polymer-Brush-Modified Electrodes with Bioelectrocatalytic Activity Controlled by pH Value
179(7)
6.4 pH-Controlled Electrode Interfaces Coupled with in situ Produced pH Changes Generated by Enzyme Reactions
186(2)
6.5 pH-Triggered Disassembly of Biomolecular Complexes on Surfaces Resulting in Electrode Activation
188(2)
6.6 pH-Stimulated Biomolecule Release from Polymer-Brush Modified Electrodes
190(6)
6.7 Conclusions and Perspectives
196(7)
References
197(4)
Symbols and Abbreviations
201(2)
7 Coupling of Switchable Electrodes and Electrochemical Processes with Biomolecular Computing Systems
203(26)
7.1 Introduction
203(3)
7.1.1 General Introduction to the Area of Enzyme-based Biocomputing (Logic) Systems
203(2)
7.1.2 General Definitions and Approaches Used in Realization of Enzyme-based Logic Systems
205(1)
7.2 Electrochemical Analysis of Output Signals Generated by Enzyme Logic Systems
206(14)
7.2.1 Chronoamperometric Transduction of Chemical Output Signals Produced by Enzyme-based Logic Systems
207(2)
7.2.2 Potentiometric Transduction of Chemical Output Signals Produced by Enzyme-based Logic Systems
209(1)
7.2.3 pH-Measurements as a Tool for Transduction of Chemical Output Signals Produced by Enzyme-based Logic Systems
209(3)
7.2.4 Indirect Electrochemical Analysis of Output Signals Generated by Enzyme-based Logic Systems Using Electrodes Functionalized with pH-Switchable Polymers
212(3)
7.2.5 Conductivity Measurements as a Tool for Transduction of Chemical Output Signals Produced by Enzyme-based Logic Systems
215(3)
7.2.6 Transduction of Chemical Output Signals Produced by Enzyme-based Logic Systems Using Semiconductor Devices
218(2)
7.3 Summary
220(9)
References
220(6)
Symbols and Abbreviations
226(3)
8 Biofuel Cells with Switchable/Tunable Power Output as an Example of Implantable Bioelectronic Devices
229(34)
8.1 General Introduction: Bioelectronics and Implantable Electronics
229(2)
8.2 More Specific Introduction: Harvesting Power from Biological Sources -- Implantable Biofuel Cells
231(5)
8.3 Biofuel Cells with Switchable/Tunable Power Output
236(20)
8.3.1 Switchable/Tunable Biofuel Cell Controlled by Electrical Signals
236(3)
8.3.2 Switchable/Tunable Biofuel Cell Controlled by Magnetic Signals
239(3)
8.3.3 Biofuel Cells Controlled by Logically Processed Biochemical Signals
242(14)
8.4 Summary
256(7)
References
257(3)
Symbols and Abbreviations
260(3)
9 Signal-triggered Release of Biomolecules from Alginate-modified Electrodes
263(22)
9.1 Introduction -- Signal-activated Biomolecular Release Processes
263(1)
9.2 Alginate Polymer Cross-linked with Fe3+ Cations -- The Convenient Matrix for Molecular Release Stimulated by Electrochemical Signal
264(4)
9.3 Self-operating Release Systems Based on the Alginate Electrodes Integrated with Biosensing Electrodes
268(10)
9.4 Conclusions and Perspectives
278(7)
References
279(3)
Symbols and Abbreviations
282(3)
10 What is Next? Molecular Biology Brings New Ideas
285(12)
10.1 Switchable Enzymes and Their Use in Bioelectrochemical Systems -- Motivation and Applications
286(1)
10.2 Electrocatalytic Function of the Ca2+-Switchable PQQ-GDH-CaM Chimeric Enzyme
287(2)
10.3 Integration of the Ca2+-Switchable PQQ-GDH-CaM Chimeric Enzyme with a Semiconductor Chip
289(2)
10.4 A Ca2+-Switchable Biofuel Cell Based on the PQQ-GDH-CaM Chimeric Enzyme
291(1)
10.5 Substance Release System Activated with Ca2+ Cations and Based on the PQQ-GDH-CaM Chimeric Enzyme
292(2)
10.6 Summary
294(3)
References
294(2)
Symbols and Abbreviations
296(1)
11 Summary and Outlook: Scaling up the Complexity of Signal-processing Systems and Foreseeing New Applications
297(6)
References
301(2)
Index 303
Evgeny Katz, PhD, is Milton Kerker Chaired Professor at the Department of Chemistry and Biomolecular Science, Clarkson University, New York. His scientific interests are in the broad areas of bioelectronics, biosensors, biofuel cells, biomolecular information processing and recently in forensic science.