Muutke küpsiste eelistusi

E-raamat: Signals and Systems for Bioengineers: A MATLAB-Based Introduction

(Rutgers University and Robert Wood Johnson Medical School-University of Medicine & Dentistry of New Jersey, New Brunswick, USA)
  • Formaat: EPUB+DRM
  • Sari: Biomedical Engineering
  • Ilmumisaeg: 29-Aug-2011
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780123849830
  • Formaat - EPUB+DRM
  • Hind: 61,41 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Biomedical Engineering
  • Ilmumisaeg: 29-Aug-2011
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780123849830

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book guides the reader through the electrical engineering principles that can be applied to biological systems and are therefore important to biomedical studies. The basic engineering concepts that underlie biomedical systems, medical devices, biocontrol, and biosignal analysis are explained in detail.

This textbook is perfect for the one-semester bioengineering course usually offered in conjunction with a laboratory on signals and measurements which presents the fundamentals of systems and signal analysis. The target course occupies a pivotal position in the bioengineering curriculum and will play a critical role in the future development of bioengineering students. There are extensive questions and problems that are available through a companion site to enhance the learning experience.

New to this edition:

  • Reorganized to emphasize signal and system analysis
  • Increased coverage of time-domain signal analysis
  • Expanded coverage of biomeasurement, using examples in ultrasound and electrophysiology
  • New applications in biocontrol, with examples from physiological systems modeling such as the respiratory system
  • Double the number of Matlab and non-Matlab exercises to provide ample practice solving problems - by hand and with computational tools
  • More Biomedical and real-world examples
  • More biomedical figures throughout

For instructors using this text in their course, accompanying website includes support materials such as MATLAB data and functions needed to solve the problems, a few helpful routines, and all of the MATLAB examples. Visit www.elsevierdirect.com and search "Semmlow."

Muu info

The only textbook that relates important electrical engineering concepts to biomedical engineering and biological studies students
Acknowledgements ix
Preface to the Second Edition xi
I SIGNALS
1 The Big Picture: Bioengineering Signals and Systems
1.1 Biological Systems
3(2)
1.2 Biosignals
5(7)
1.2.1 Signal Encoding
8(1)
1.2.2 Continuous or Analog Domain Signals
8(1)
1.2.3 Discrete-Time or Digital Signals
9(3)
1.3 Noise
12(8)
1.3.1 Electronic Noise
14(2)
1.3.2 Decibels
16(2)
1.3.3 Signal-to-Noise Ratio (SNR)
18(2)
1.4 Signal Properties---Basic Measurements
20(10)
1.4.1 Mean, Standard Deviation, and Variance
21(5)
1.4.2 Averaging and Ensemble Averaging
26(4)
1.5 Summary
30(5)
Problems
31(4)
2 Basic Concepts in Signal Processing
2.1 Basic Signals---The Sinusoidal Waveform
35(8)
2.1.1 Sinusoidal Arithmetic
39(2)
2.1.2 Complex Representation
41(2)
2.2 More Basic Signals---Periodic, Aperiodic, and Transient
43(4)
2.3 Two-Dimensional Signals---Images
47(3)
2.4 Signal Comparisons and Transformations
50(27)
2.4.1 Correlation
51(5)
2.4.2 Orthogonal Signals and Orthogonality
56(1)
2.4.3 Matrix of Correlations
57(2)
2.4.4 Multiple Correlations
59(4)
2.4.5 Crosscorrelation
63(7)
2.4.6 Autocorrelation
70(4)
2.4.7 Autocovariance and Crosscovariance
74(3)
2.5 Summary
77(4)
Problems
77(4)
3 Fourier Transform: Introduction
3.1 Time- and Frequency-Domain Signal Representations
81(6)
3.1.1 Frequency Transformations
82(2)
3.1.2 Useful Properties of the Sinusoidal Signal
84(3)
3.2 Fourier Series Analysis
87(6)
3.2.1 Symmetry
92(1)
3.3 Frequency Representation
93(6)
3.4 Complex Representation
99(6)
3.5 The Continuous Fourier Transform
105(4)
3.6 Discrete Data: The Discrete Fourier Series and Discrete Fourier Transform
109(4)
3.7 MATLAB Implementation of the Discrete Fourier Transform (DFT)
113(10)
3.8 Summary
123(8)
Problems
123(8)
4 The Fourier Transform and Power Spectrum: Implications and Applications
4.1 Data Acquisition and Storage
131(14)
4.1.1 Data Sampling---The Sampling Theorem
131(6)
4.1.2 Amplitude Slicing---Quantization
137(3)
4.1.3 Data Length---Truncation
140(1)
4.1.3.1 Data Length and Spectral Resolution
140(3)
4.1.4 Data Truncation---Window Functions
143(2)
4.2 Power Spectrum
145(5)
4.3 Spectral Averaging
150(5)
4.4 Stationarity and Time-Frequency Analysis
155(3)
4.5 Signal Bandwidth
158(4)
4.6 Summary
162(7)
Problems
163(6)
II SYSTEMS
5 Linear Systems in the Frequency Domain: The Transfer Function
5.1 Linear Systems Analysis---An Overview
169(10)
5.1.1 Analog and System Representations of Linear Processes
170(1)
5.1.2 Linear Elements---Linearity, Time Invariance, Causality
171(2)
5.1.3 Superposition
173(1)
5.1.4 Systems Analysis and Systems Models
173(5)
5.1.5 Systems and Analog Analysis---Summary
178(1)
5.2 The Response of System Elements to Sinusoidal Inputs---Phasor Analysis
179(4)
5.3 The Transfer Function
183(7)
5.3.1 The Spectrum of a Transfer Function
187(3)
5.4 Transfer Function Spectral Plots---The Bode Plot
190(14)
5.4.1 Constant Gain Element
190(1)
5.4.2 Derivative Element
191(1)
5.4.3 Integrator Element
192(1)
5.4.4 First-Order Element
193(5)
5.4.5 Second-Order Element
198(6)
5.5 Bode Plots Combining Multiple Elements
204(8)
5.6 The Transfer Function and the Fourier Transform
212(2)
5.7 Summary
214(7)
Problems
215(6)
6 Linear Systems Analysis in the Complex Frequency Domain: The Laplace Transform and the Analysis of Transients
6.1 The Laplace Transform
221(7)
6.1.1 Definition of the Laplace Transform
222(2)
6.1.2 Laplace Transform Representation of Elements---Calculus Operations in the Laplace Domain
224(1)
6.1.3 Sources---Common Signals in the Laplace Domain
225(2)
6.1.4 Converting the Laplace Transform to the Frequency Domain
227(1)
6.1.5 The Inverse Laplace Transform
227(1)
6.2 Laplace Analysis---The Laplace Transfer Function
228(17)
6.2.1 Time-Delay Element---The Time Delay Theorem
229(2)
6.2.2 Constant Gain Element
231(1)
6.2.3 Derivative Element
231(1)
6.2.4 Integrator Element
232(1)
6.2.5 First-Order Element
233(4)
6.2.6 Second-Order Element
237(1)
6.2.6.1 Second-Order Elements with Real Roots
238(2)
6.2.6.2 Partial Fraction Expansion
240(3)
6.2.6.3 Second-Order Processes with Complex Roots
243(2)
6.3 Nonzero Initial Conditions---Initial and Final Value Theorems
245(4)
6.3.1 Nonzero Initial Conditions
245(2)
6.3.2 Initial and Final Value Theorems
247(2)
6.4 The Laplace Domain and the Frequency Domain
249(6)
6.5 Summary
255(6)
Problems
255(6)
7 Linear Systems Analysis in the Time Domain: Convolution and Simulation
7.1 Linear Systems
261(1)
7.2 The Convolution Integral
262(17)
7.2.1 Determining the Impulse Response
272(1)
7.2.2 MATLAB Implementation
272(7)
7.3 The Relationship between Convolution and Frequency Domain Analysis
279(4)
7.4 Convolution in the Frequency Domain
283(5)
7.4.1 Sampling in the Frequency Domain
286(2)
7.5 System Simulation and Simulink
288(11)
7.5.1 Model Specification and Simulation
290(6)
7.5.2 Complex System Simulations
296(3)
7.6 Biological Examples
299(9)
7.7 Summary
308(9)
Problems
309(8)
8 Linear System Analysis: Applications
8.1 Linear Filters---Introduction
317(7)
8.1.1 Filter Definitions
318(1)
8.1.1.1 Bandwidth
318(1)
8.1.1.2 Filter Types
319(1)
8.1.1.3 Filter Attenuation Slope---Filter Order
319(1)
8.1.1.4 Filter Initial Sharpness
320(1)
8.1.2 FIR versus IIR Filter Characteristics
321(3)
8.2 Finite Impulse Response (FIR) Filters
324(21)
8.2.1 FIR Filter Design and Implementation
327(12)
8.2.2 Derivative Filters---The Two-Point Central Difference Algorithm
339(4)
8.2.3 Determining Cutoff Frequency and Skip Factor
343(2)
8.3 Two-Dimensional Filtering---Images
345(5)
8.4 FIR Filter Design Using MATLAB---The Signal Processing Toolbox
350(4)
8.5 Infinite Impulse Response Filters
354(8)
8.5.1 IIR Filter Implementation
356(1)
8.5.2 Designing IIR Filters with MATLAB
356(6)
8.6 The Digital Transfer Function and the Z-Transform
362(6)
8.6.1 The Digital Transfer Function
364(2)
8.6.2 MATLAB Implementation
366(2)
8.7 Summary
368(9)
Problems
369(8)
III CIRCUITS
9 Circuit Elements and Circuit Variables
9.1 Circuits and Analog Systems
377(2)
9.2 System Variables
379(3)
9.2.1 Electrical and Mechanical Variables
379(2)
9.2.2 Voltage and Current Definitions
381(1)
9.3 Electrical Elements
382(12)
9.3.1 Passive Electrical Elements
383(1)
9.3.1.1 Energy Users---Resistors
383(2)
9.3.1.2 Energy Storage Devices---Inductors and Capacitors
385(5)
9.3.1.3 Electrical Elements---Reality Check
390(1)
9.3.2 Electrical Elements---Active Elements or Sources
391(1)
9.3.3 The Fluid Analogy
392(2)
9.4 Phasor Analysis
394(6)
9.4.1 Phasor Representation---Electrical Elements
395(5)
9.5 Laplace Domain---Electrical Elements
400(4)
9.5.1 Zero Initial Conditions
400(1)
9.5.2 Nonzero Initial Conditions
401(3)
9.6 Summary---Electrical Elements
404(1)
9.7 Mechanical Elements
404(11)
9.7.1 Passive Mechanical Elements
404(3)
9.7.2 Elasticity
407(2)
9.7.3 Mechanical Sources
409(3)
9.7.4 Phasor Analysis of Mechanical Systems---Mechanical Impedance
412(1)
9.7.5 Laplace Domain Representations of Mechanical Elements with Nonzero Initial Conditions
413(2)
9.8 Summary
415(6)
Problems
416(5)
10 Analysis of Analog Circuits and Models
10.1 Conservation Laws---Kirchhoff's Voltage Law
421(18)
10.1.1 Mesh Analysis---Single Loops
423(6)
10.1.2 Mesh Analysis---Multiple Loops
429(5)
10.1.2.1 Shortcut Method for Multimesh Circuits
434(1)
10.1.3 Mesh Analysis---MATLAB Implementation
435(4)
10.2 Conservation Laws---Kirchhoff's Current Law: Nodal Analysis
439(5)
10.3 Conservation Laws---Newton's Law: Mechanical Systems
444(6)
10.4 Resonance
450(14)
10.4.1 Resonant Frequency
451(1)
10.4.2 Resonant Bandwidth, Q
451(13)
10.5 Summary
464(7)
Problems
466(5)
11 Circuit Reduction: Simplifications
11.1 System Simplifications---Passive Network Reduction
471(5)
11.1.1 Series Electrical Elements
472(1)
11.1.2 Parallel Elements
473(3)
11.1.2.1 Combining Two Parallel Impedances
476(1)
11.2 Network Reduction---Passive Networks
476(9)
11.2.1 Network Reduction---Successive Series---Parallel Combinations
476(3)
11.2.1.1 Resonance Revisited
479(1)
11.2.2 Network Reduction---Voltage-Current Method
480(5)
11.3 Ideal and Real Sources
485(10)
11.3.1 The Voltage-Current or v-i Plot
485(3)
11.3.2 Real Voltage Sources---The Thevenin Source
488(2)
11.3.3 Real Current Sources---The Norton Source
490(2)
11.3.4 Thevenin and Norton Circuit Conversion
492(3)
11.4 Thevenin and Norton Theorems---Network Reduction with Sources
495(5)
11.5 Measurement Loading
500(5)
11.5.1 Ideal and Real Measurement Devices
500(4)
11.5.2 Maximum Power Transfer
504(1)
11.6 Mechanical Systems
505(6)
11.7 Multiple Sources---Revisited
511(1)
11.8 Summary
512(8)
Problems
513(7)
12 Basic Analog Electronics: Operational Amplifiers
12.1 The Amplifier
520(2)
12.2 The Operational Amplifier
522(1)
12.3 The Noninverting Amplifier
523(3)
12.4 The Inverting Amplifier
526(2)
12.5 Practical Op Amps
528(16)
12.5.1 Limitations in Transfer Characteristics of Real Op Amps
528(1)
12.5.1.1 Bandwidth
529(4)
12.5.1.2 Stability
533(5)
12.5.2 Input Characteristics
538(1)
12.5.2.1 Input Voltage Sources
538(2)
12.5.2.2 Input Current Sources
540(3)
12.5.2.3 Input Impedance
543(1)
12.5.3 Output Characteristics
543(1)
12.6 Power Supply
544(2)
12.7 Op Amp Circuits or 101 Things to Do with an Op Amp
546(10)
12.7.1 The Differential Amplifier
546(1)
12.7.2 The Adder
547(1)
12.7.3 The Buffer Amplifier
548(1)
12.7.4 The Transconductance Amplifier
549(2)
12.7.5 Analog Filters
551(2)
12.7.6 Instrumentation Amplifier
553(3)
12.8 Summary
556(5)
Problems
556(5)
Appendix A Derivations 561(6)
Appendix B Laplace Transforms and Properties of the Fourier Transform 567(2)
Appendix C Trigonometric and Other Formulae 569(2)
Appendix D Conversion Factors: Units 571(4)
Appendix E Complex Arithmetic 575(4)
Appendix F LF356 Specifications 579(2)
Appendix G Determinants and Cramer's Rule 581(2)
Bibliography 583(2)
Index 585
John Semmlow was a professor in the Department of Biomedical Engineering of Rutgers University and in the Department of Surgery of Robert Wood Johnson Medical School UMDNJ for 32 years. Over that period he published over 100 review journal articles and has been appointed a Fellow of the IEEE, the AIMBE, and the BMES. He retired in June of 2010, but still remains active in research, particularly cardiovascular diagnosis and human motor control. He is actively pursuing a second career as an artist, designing and building computer controlled kinetic art: sculptures that move in interesting and intriguing ways.