Muutke küpsiste eelistusi

E-raamat: In Silico Engineering of Disulphide Bonds to Produce Stable Cellulase

  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This Brief highlights different approaches used to create stable cellulase and its use in different fields. Cellulase is an industrial enzyme with a broad range of significant applications in biofuel production and cellulosic waste management. Cellulase 7a from Trichoderma reesei is the most efficient enzyme in the bio hydrolysis of cellulose. In order to improve its thermal stability, it can be engineered using a variety of approaches, such as hydrophobic interactions, aromatic interactions, hydrogen bonds, ion pairs and disulfide bridge creation.

1 Introduction of Cellulase and Its Application
1(6)
1.1 Biofuel as a Suitable Alternative for Fossil Fuel
1(2)
1.2 Enzyme Stability Is One of the Limits in Biofuel Production
3(1)
1.3 A Procedure to in Silico Engineering of Cellulase
3(1)
1.4 Cellulase 7a Selected as a Target
3(1)
1.5 Advantages of Cellulose in Silico Engineering
4(3)
References
4(3)
2 Literature Review of Cellulase and Approaches to Increase Its Stability
7(16)
2.1 Cellulose and Cellulases Structure
7(1)
2.2 Applications of Cellulase
8(2)
2.2.1 Application of Cellulase in Biofuel Production
8(2)
2.3 Trichoderma reesei Known as the Crowned King of Cellulolytic Fungi
10(1)
2.4 Catalytic Mechanisms of Glycoside Hydrolases
10(2)
2.5 An Introduction to Cellulase Family 7
12(1)
2.6 Cellulose Biodegradation Procedures
13(1)
2.7 Protein Engineering as a Solution
13(3)
2.7.1 Rational Design Approach
14(2)
2.8 Advantages of Enzyme Thermo Stabilization
16(1)
2.9 Some Thermo Stabilize Mutations
16(2)
2.9.1 Introducing Disulfide Bonds as a Strategy to Increase Stability
16(2)
2.10 Molecular Dynamic Simulation as a Strong Approach to Evaluating Structure Stability
18(5)
References
19(4)
3 Methodology of Mutant Creation and Molecular Dynamic Simulation
23(8)
3.1 Obtaining Protein Structure File
23(1)
3.2 Fixing pdb File
24(1)
3.2.1 Removing Water Molecule and Ligands
24(1)
3.3 Generation of Mutated pdb Files
24(1)
3.4 Molecular Dynamic Simulation Steps
24(5)
3.4.1 pdb2gmx (Topology File Generation) Tool
26(1)
3.4.2 Unit Cell Defining the by the Tools, editconf and Adding Solvent
26(1)
3.4.3 Addition of Ions
27(1)
3.4.4 Energy Minimization as a Critical Step
27(1)
3.4.5 Equilibration of Temperature and Pressure
28(1)
3.4.6 MD Production
28(1)
3.5 Tools for Analysis of Molecular Dynamics Trajectory
29(2)
References
29(2)
4 Result and Discussion of Molecular Dynamic Simulation of Created Mutants
31(16)
4.1 Nominated Residues for Mutation
31(1)
4.2 Native Protein Structure and Stability Analysis
32(1)
4.3 Mutated Protein Number 1 (E385C and A392C) Structure and Stability Analysis
33(4)
4.4 Mutated Protein Number 2 (Y321C and A333C) Structure and Stability Analysis
37(3)
4.5 Mutated Protein Number 3 (T383C and T399C) Structure and Stability Analysis
40(1)
4.6 Mutated Protein Number 4 (A187C) Structure and Stability Analysis
41(3)
4.7 Mutated Protein Number 5 (D257C and L346C) Structure and Stability Analysis
44(3)
5 Conclusion of Simulation Analysis of Mutants
47
5.1 Conclusion of MD Simulation of Created Mutants
47(1)
5.2 Future Work of the Disulfide Bond Engineering to Cellulase
48
Dr. I. S. Amiri, received his B. Sc (Hons, Applied Physics) from Public University of Orumiyeh, Iran in 2001 and a gold medalist M. Sc. from Universiti Teknologi Malaysia (UTM), in 2009. He was awarded a PhD degree in nano photonics in 2013. He has published more than 200 journals/conferences and books in Optical Soliton Communications, Laser Physics, Photonics, Optics, Nanophotonics, Nonlinear fiber optics, Quantum Cryptography, Optical Tweezers, Nanotechnology, Biomedical Physics and Biotechnology Engineering. Now he is a visiting research fellow in University of Malaya, 50603 Kuala Lumpur, Malaysia.

Mr. B. Barati received his B. Sc (cellular and molecular Genetics) from Azad University of Tonekabon, Iran in 2011 and he is recently graduated from M. Sc. in Biotechnology from Universiti Teknologi Malaysia (UTM), in 2013. His research interests are in the field of protein engineering, enzyme production, Genetic engineering, drug design, molecular dynamic simulation and bioinformatics.