Muutke küpsiste eelistusi

E-raamat: In Silico Methods for Predicting Drug Toxicity

  • Formaat: PDF+DRM
  • Sari: Methods in Molecular Biology 2425
  • Ilmumisaeg: 21-Feb-2022
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9781071619605
  • Formaat - PDF+DRM
  • Hind: 172,28 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Methods in Molecular Biology 2425
  • Ilmumisaeg: 21-Feb-2022
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9781071619605

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This fully updated book explores all-new and revised protocols involving the use of in silico models, particularly with regard to pharmaceuticals. Divided into five sections, the volume covers the modeling of pharmaceuticals in the body, toxicity data for modeling purposes, in silico models for multiple endpoints, a number of platforms for evaluating pharmaceuticals, as well as an exploration of challenges, both scientific and sociological. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of detail and implementation advice necessary for successful results. 

Authoritative and comprehensive, In Silico Methods for Predicting Drug Toxicity, Second Edition aims to guide the reader through the correct procedures needed to harness in silico models, a field which now touches a wide variety of research specialties.
QSAR Methods.- PBPK Modeling to Simulate the Fate of Compounds in Living
Organisms.- Pharmacokinetic Tools and Applications.- In Silico Tools and
Software to Predict ADMET of New Drug Candidates.- Development of In Silico
Methods for Toxicity Prediction in Collaboration between Academia and the
Pharmaceutical Industry.- Emerging Bioinformatics Methods and Resources in
Drug Toxicology.- In Silico Prediction of Chemically-Induced Mutagenicity: A
Weight of Evidence Approach Integrating Information from QSAR Models and
Read-Across Predictions.- In Silico Methods for Chromosome Damage.- In Silico
Methods for Carcinogenicity Assessment.- In Silico Models for Developmental
Toxicity.- In Silico Models for Repeated-Dose Toxicity (RDT): Prediction of
the No Observed Adverse Effect Level (NOAEL) and Lowest Observed Adverse
Effect Level (LOAEL) for Drugs.- In Silico Models for Predicting Acute
Systemic Toxicity.- In Silico Models for Skin Sensitization and Irritation.-
In Silico Models for Hepatotoxicity.- Machine Learning Models for Predicting
Liver Toxicity.- Implementation of In Silico Toxicology Protocols in
Leadscope.- Use of Lhasa Limited Products for the In Silico Prediction of
Drug Toxicity.- Using VEGAHUB within a Weight-of-Evidence Strategy.-
MultiCASE Platform for In Silico Toxicology.- Adverse Outcome Pathways as
Versatile Tools in Liver Toxicity Testing.- The Use of In Silico Methods for
the Regulatory Toxicological Assessment of Pharmaceutical Impurities.-
Computational Modeling of Mixture Toxicity.- In Silico Methods for Ecological
Risk Assessment: Principles, Tiered Approaches, Applications, and Future
Perspectives.- Increasing the Value of Data within a Large Pharmaceutical
Company through In Silico Models.