Muutke küpsiste eelistusi

E-raamat: Silicon Carbide Ceramics: Structure, Properties and Manufacturing

(University of Sydney, Australia)
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 273,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

It has been three decades since the last significant book was published on SiC ceramics (other than those books that specifically focus on SiC semiconductors). Thirty years has been a long time in the world of SiC ceramics. In the early 1990s, SiC was still a relatively obscure ceramic even within the materials community, prominent only as an industrial abrasive (carborundum), and a refractory (Chapter 7). This has all changed dramatically in the 21st century. For example,

  • As a semiconductor, SiC greatly surpasses silicon in performance, especially in high-power systems. Its market penetration since its launch in 2001 has been exponential. Single-crystal SiC semiconductors are covered in Chapter 3
  • Millions of military and paramilitary personnel have globally been protected with lightweight SiC body armour, since the late 1990s. Body armour is covered in Chapters 4 and 5
  • SiC–SiC is a composite material close to commercialization that makes possible high-temperature load-bearing applications hitherto only able to be hypothesized: from ultra-high-temperature jet turbine blades to advanced nuclear fuel encapsulation, the possibilities are very promising. Aerospace applications are covered in Chapter 9
  • Other key areas that are addressed are blast-resistant SiC vehicle/vessel armour in Chapter 8 and wear-resistant SiC ceramics in Chapter 6
  • Silicon Carbide Ceramics will be an essential reference resource for academic and industrial researchers and materials scientists and engineers working in ceramic materials for the semiconductor, defence, aerospace, wear resistance and refractory fields
  • Presents an extensive review of the history, production and properties of SiC ceramics, including their characterization and applications
  • Discusses classical and state-of-the-art sintering technologies for SiC ceramics
  • Focuses on the future of ceramic manufacturing and advanced ceramic additive technologies
Foreword xvii
Preface xix
Forethought xxiii
1 Introduction and Applications of SiC Ceramics
1(80)
1.1 Introduction to SiC ceramics
1(8)
1.2 Brief history of SiC
9(4)
1.2.1 Berzelius and other 19th century chemists
9(1)
1.2.2 The discovery of moissanite---natural SiC
10(1)
1.2.3 Timeline of SiC
11(2)
1.3 Edward Goodrich Acheson and industrial SiC
13(11)
1.3.1 Edward Acheson
13(2)
1.3.2 The Acheson process
15(4)
1.3.3 Industrial SiC produced by the Acheson process
19(2)
1.3.4 The Carborundum Company
21(3)
1.4 Applications of SiC ceramics
24(2)
1.5 SiC armour ceramics
26(13)
1.5.1 Brief background to ceramic armour
27(3)
1.5.2 Reasons for the global dominance of SiC in body armour
30(1)
1.5.3 Ceramic armour projectile-defeat mechanisms
30(2)
1.5.4 Ceramic armour versus metal armour
32(1)
1.5.5 Ceramic armour design principles
33(1)
1.5.6 Advanced munitions against which armour ceramics are essential
34(2)
1.5.7 DSSC and RSSC as ceramic armour
36(1)
1.5.8 GBSC-CMC as ceramic armour
37(2)
1.6 SiC wear-resistant ceramics
39(18)
1.6.1 Wear in the industrial environment
39(1)
1.6.2 Alumina --- the cheap mass-market incumbent
39(1)
1.6.3 SiC: SNBSC, RSSC and DSSC
39(3)
1.6.4 Tungsten carbide cermets (cemented carbides)
42(2)
1.6.5 Tribology
44(5)
1.6.6 Material properties and wear resistance
49(6)
1.6.7 Summary of wear criteria
55(1)
1.6.8 Wear applications for wear-resistant ceramics
55(2)
1.7 SiC refractories
57(11)
1.7.1 Prehistory of the refractories industry
57(1)
1.7.2 Major uses of refractories
58(1)
1.7.3 Key requirements for refractories
59(1)
1.7.4 Classification of refractories
59(1)
1.7.5 Refractory bricks and monolithic refractories
59(1)
1.7.6 Ultra-refractories
60(1)
1.7.7 SiC in the refractories industry
60(3)
1.7.8 Significant new applications with the advent of SNBSC
63(5)
1.8 Precision ceramics and other niche applications for SiC
68(6)
1.8.1 Nuclear fuel encapsulation
69(1)
1.8.2 Mechanical seals
70(2)
1.8.3 Pump components
72(1)
1.8.4 Heat exchangers for high-temperature applications
72(1)
1.8.5 SiC in the automotive industry
72(1)
1.8.6 Gas turbines
73(1)
1.8.7 Other uses for SiC
73(1)
1.9 SiC ceramics: the future
74(7)
1.9.1 Single-crystal semiconductor wafers
74(1)
1.9.2 Armour ceramics
75(1)
1.9.3 SiC---SiC for aerospace and nuclear energy
75(1)
1.9.4 Wear-resistant ceramics
75(1)
1.9.5 Refractories
75(1)
1.9.6 Bonded abrasives
76(1)
References
76(5)
2 Structure and Properties of SiC Ceramics
81(84)
2.1 Structure and crystallography
81(6)
2.1.1 Atomic structure
81(1)
2.1.2 SiC polytypes
82(2)
2.1.3 Industrially relevant polytypes
84(3)
2.1.4 Polytype notation
87(1)
2.2 Properties of SiC
87(22)
2.2.1 Mechanical properties of SiC
90(7)
2.2.2 Thermomechanical properties
97(6)
2.2.3 Chemical properties
103(4)
2.2.4 Electrical properties
107(2)
2.3 Sintering mechanisms of SiC ceramics
109(16)
2.3.1 Sintering defined
109(4)
2.3.2 Thermodynamic principles underlying sintering
113(6)
2.3.3 Sintering mechanisms
119(4)
2.3.4 Grain growth and pore elimination
123(2)
2.4 Liquid-phase sintering of SiC
125(5)
2.5 Summary of SiC sintering aid systems developed to date
130(4)
2.6 Boron---carbon sintering aids: modes of action
134(20)
2.6.1 Boron---carbon in the beginning: Prochazka 1973
134(1)
2.6.2 Boron---carbon in the late 20th century
135(2)
2.6.3 The emerging debate: does liquid-phase sintering occur in SSiC-DSSC?
137(1)
2.6.4 The effects of carbon in B--C-doped SSiC-DSSC
138(6)
2.6.5 The effects of boron in B--C-doped SSiC-DSSC: Stobierski 2003
144(5)
2.6.6 Dihedral angles in B--C-doped SSiC-DSSC: Stobierski 2003
149(3)
2.6.7 Stobierski 2003: conclusions
152(1)
2.6.8 Boron---carbon sintering aids: research after 2003
152(2)
2.7 Aluminium---carbon and aluminium---boron---carbon
154(2)
2.8 Beryllium---boron---carbon
156(1)
2.9 Liquid-phase sintered SiC: sintering aids
156(1)
2.10 Conclusions
157(8)
References
158(7)
3 SiC Single Crystal Semiconductors
165(50)
3.1 Introduction
165(4)
3.1.1 Advantages of SiC as a semiconductor wafer material
165(2)
3.1.2 Early SiC semiconductor use: light emitting diode
167(2)
3.2 Brief history of the semiconductor industry
169(1)
3.3 Silicon wafer synthesis: the Czochralski method
170(1)
3.4 SiC thin film coatings
171(5)
3.4.1 Epitaxial growth
172(1)
3.4.2 Chemical vapour deposition concept and origins
172(1)
3.4.3 Chemical vapour deposition and temperature reduction
173(1)
3.4.4 Chemical vapour deposition heat source
173(1)
3.4.5 Chemical vapour deposition and photolithography in semiconductor manufacture
173(1)
3.4.6 Chemical vapour deposition of SiC
174(1)
3.4.7 Step-controlled epitaxy: the key to SiC boule synthesis
174(2)
3.5 SiC single crystal wafers --- technical challenges: melting SiC and polytypism
176(2)
3.6 1955: the Lely process
178(2)
3.7 The SiC semiconductor Hiatus: 1960s-90s
180(1)
3.8 Evolution of the Lely process
181(8)
3.9 SiC single crystal boules at the dawn of the 21st century
189(5)
3.10 Micropipes
194(9)
3.10.1 Micropipes defined and imaged
195(5)
3.10.2 Liquid-phase epitaxy --- a partial solution to micropipes
200(1)
3.10.3 The `repeated A-face' growth process breakthrough
200(3)
3.11 21st century: SiC semiconductor applications
203(7)
3.11.1 SiC: well ahead of silicon and gallium nitride for power electronics
204(1)
3.11.2 Timeline of the 21st century SiC semiconductor boom
205(1)
3.11.3 Shottky barrier diodes
206(1)
3.11.4 Field-effect transistor
206(2)
3.11.5 Other SiC devices
208(1)
3.11.6 Power electronics
208(1)
3.11.7 SiC device design and packaging considerations
209(1)
3.12 SiC semiconductors: conclusions
210(5)
References
211(4)
4 Hot-Pressed SiC (HPSC)
215(36)
4.1 Hot-pressed SiC in context
215(1)
4.2 Dense pure SiC: the commercial imperative
216(1)
4.3 Hot-pressed SiC in comparison to other SiC types
217(1)
4.4 The importance and inconvenience of SiC ultrafine particle size
218(3)
4.5 Background to hot-pressed SiC
221(1)
4.6 The invention of hot-pressed SiC: Alliegro 1956
222(2)
4.7 Significant hot-pressed SiC patents and papers after Alliegro
224(9)
4.7.1 Weaver: the first hot-pressed SiC patent -- 1972
224(1)
4.7.2 Prochazka's four patents on boron sintering aids for hot-pressed SiC: 1972--75
225(4)
4.7.3 DSSC a hot-pressed SiC spin-off technology: Prochazka 1973
229(1)
4.7.4 Carbon-fibre reinforced hot-pressed SiC: Hollenberg 1974
229(1)
4.7.5 HPSC with Al2O3 sintering aid
230(2)
4.7.6 Hot-pressed SiC patents from the late 1970s onward
232(1)
4.8 Significant hot-pressed SiC research papers: late 20th century to the present day
233(2)
4.8.1 BaO and carbon sintering aids: 1985
233(1)
4.8.2 Superplastic hot-pressing of SiC: 1996
233(1)
4.8.3 Fully dense hot-pressed SiC with Al/B/C sintering aids: 2000/2001
234(1)
4.8.4 Sintering aids for control of hot-pressed SiC densification and properties: 2008
234(1)
4.8.5 Pyrolysis-derived HPSC
235(1)
4.8.6 B4C and TiC reinforced hot-pressed SiC
235(1)
4.9 HPSC without sintering aids: Sajgalic 2015
235(2)
4.10 Hot isostatic pressing of SiC
237(2)
4.11 SPS/plasma pressure compaction
239(1)
4.12 Hot-pressed SiC production considerations
239(8)
4.12.1 Furnace systems
239(2)
4.12.2 Practical considerations
241(1)
4.12.3 Temperature measurement
242(2)
4.12.4 Hot-pressed SiC furnaces
244(3)
4.13 Hot-pressed SiC concluding comments
247(4)
References
248(3)
5 Direct Sintered (Pressureless Sintered) SiC: DSSC
251(98)
5.1 Introduction to pressureless sintered SiC
251(1)
5.2 Direct-sintered SiC --- the commercial imperative
251(2)
5.3 Direct-sintered SiC in comparison to other SiC types
253(2)
5.3.1 Direct-sintered Sic versus hot-pressed SiC
253(2)
5.4 Essential criteria for synthesising direct-sintered SiC
255(1)
5.4.1 Sintering aids
255(1)
5.4.2 Submicron SiC powders
255(1)
5.4.3 Svante Prochazka --- inventor of direct-sintered SiC
255(1)
5.5 Solid-state sintered DSSC: development and evolution
256(26)
5.5.1 The first direct-sintered SiC patent: Prochazka 1973
257(4)
5.5.2 Prochazka's second DSSC patent: 1975
261(1)
5.5.3 Prochazka and Scanlan: 1975 SSiC-DSSC paper
262(1)
5.5.4 Lange and Gupta's 1976 SSiC-DSSC paper
263(2)
5.5.5 SSiC-DSSC patent 1 of the Coppola Carborundum/Stemcor/Kennecott team: US 4,312,954 1975
265(4)
5.5.6 Patent 2 of the Coppola Carborundum/Stemcor/Kennecott team: US 4,124,667 1975
269(1)
5.5.7 Patent 3 of the Coppola Carborundum/Stemcor/Kennecott team: US 4,179,299
269(1)
5.5.8 Patent 4 of the Coppola Carborundum/Stemcor/Kennecott team: US 4,080,415 1975
269(1)
5.5.9 Patent 5 of the Coppola Carborundum/Stemcor/Kennecott team: US 4,172,109 1976
270(1)
5.5.10 Patent 6 of the Coppola Carborundum/Stemcor/Kennecott team: US 4,123,286 1976
271(3)
5.5.11 Patent 7 of the Coppola Carborundum/Stemcor/Kennecott team: US 4,135,938
274(2)
5.5.12 Patent 8 of the Coppola Carborundum/Stemcor/Kennecott team: US 4,237,085
276(1)
5.5.13 Schwetz and Lipp of Elektroschmeltzwerk Kempten: US 4,230,497
277(5)
5.6 SSiC-DSSC by the 1980s
282(1)
5.7 Significant SSiC-DSSC patents from the 1980s onward
283(2)
5.8 Significant SSiC-DSSC publications from the 1980s onward
285(18)
5.8.1 Sintering aid evolution for SSiC-DSSC
287(6)
5.8.2 Microstructure and properties of SSiC-DSSC
293(3)
5.8.3 The emerging debate: does liquid phase sintering occur in SSiC-DSSC?
296(4)
5.8.4 Densification of SSiC-DSSC by spark plasma sintering
300(2)
5.8.5 Other progress in SSiC-DSSC
302(1)
5.8.6 Microstructure of SSiC-DSSC
302(1)
5.9 Liquid-phase sintered dense SiC
303(6)
5.9.1 Liquid phase sintering defined
303(1)
5.9.2 The LPS-DSSC concept
303(3)
5.9.3 HPSC with Al2O3 sintering aid: Lange 1975
306(1)
5.9.4 Omori and Takei LPS-DSSC pioneers: 1982
307(2)
5.10 Evolution of LPS-DSSC
309(6)
5.11 LPS-DSSC in the 21st century
315(9)
5.12 The nanoinfiltration and transient eutectic phase process for LPS-DSSC
324(2)
5.13 DSSC production considerations
326(13)
5.13.1 The importance and inconvenience of SiC ultra-fine particle size
326(6)
5.13.2 Furnace systems
332(3)
5.13.3 Vacuum or ambient inert gas
335(1)
5.13.4 Temperature measurement
336(1)
5.13.5 The DSSC formulations
337(2)
5.14 Conclusions
339(10)
References
340(9)
6 Reaction Sintered SiC (RSSC)
349(46)
6.1 Definition of reaction-sintered SiC
349(4)
6.2 Fundamental principles of reaction-sintered SiC manufacture
353(2)
6.3 Evolution of reaction-sintered SiC
355(7)
6.4 Manufacture of reaction-sintered SiC: mixture feedstock
362(9)
6.4.1 Ceramic powder feedstock preparation
362(1)
6.4.2 Ceramic powder characterisation considerations
363(2)
6.4.3 Silicon carbide powders
365(2)
6.4.4 Carbon precursors
367(4)
6.5 Manufacture of reaction-sintered SiC: forming methods
371(9)
6.5.1 Reaction-sintered SiC forming methods -- specific principles
372(1)
6.5.2 Dry forming versus wet forming
372(1)
6.5.3 Uniaxial die pressing (dry forming process)
373(3)
6.5.4 Cold isostatic pressing (dry forming process)
376(1)
6.5.5 Extrusion (wet forming process)
376(1)
6.5.6 Plastic forming (wet forming Process)
376(1)
6.5.7 Thixotropic casting (wet forming process)
377(1)
6.5.8 Powder injection moulding (wet forming process)
378(1)
6.5.9 Gelcasting (wet forming process)
378(1)
6.5.10 Slip casting (wet forming process)
378(1)
6.5.11 Tape casting (wet forming process)
378(1)
6.5.12 Green machining (direct manufacture process)
379(1)
6.5.13 Additive manufacturing (direct-manufacture process)
379(1)
6.5.14 RSSC forming methods: closing remarks
380(1)
6.6 Manufacture of reaction-sintered SiC: reaction sintering
380(4)
6.6.1 Furnace and furnace atmosphere
380(2)
6.6.2 Sintering temperature cycle and accurate temperature control in the 1500°C plus range
382(2)
6.7 Reaction bonded boron carbide
384(3)
6.7.1 Boron---silicon (binary) and boron---silicon---carbon (ternary) compounds
385(1)
6.7.2 Shock-induced amorphisation
385(1)
6.7.3 High cost of boron carbide powder
386(1)
6.7.4 Modest density improvement of reaction bonded boron carbide
386(1)
6.7.5 Reaction bonded boron carbide: concluding comments
387(1)
6.8 Industrial reaction-sintered SiC competitiveness
387(3)
6.9 Siliconised graphite
390(1)
6.10 Conclusions
391(4)
References
392(3)
7 Silicon Nitride-Bonded SiC (SNBSC)
395(40)
7.1 Introduction to silicon nitride bonded silicon carbide
395(3)
7.2 Overview of SNBSC in comparison with RSSC and DSSC
398(1)
7.3 Origin of silicon nitride bonded silicon carbide
399(3)
7.4 Silicon nitride: a brief overview
402(3)
7.4.1 Silicon nitride ceramics
402(1)
7.4.2 Applications of silicon nitride ceramics
403(1)
7.4.3 Silicon nitride ceramics - the sintering problem
404(1)
7.4.4 Densification of silicon nitride ceramics
404(1)
7.5 SIALON
405(2)
7.6 Fundamentals of the SNBSC process
407(4)
7.6.1 Silicon particle size
408(2)
7.6.2 Silicon purity
410(1)
7.6.3 SNBSC body formulation
410(1)
7.6.4 Nitridation gas
411(1)
7.6.5 Nitridation temperature
411(1)
7.7 Evolution of the SNBSC manufacturing process
411(4)
7.7.1 Nitridation temperature
412(1)
7.7.2 Nitridation catalysts
413(1)
7.7.3 Binders
414(1)
7.7.4 Zirconia doping
414(1)
7.7.5 Alternative densification methods for SNBSC
414(1)
7.7.6 Other SNBSC innovations
415(1)
7.7.7 Hot-pressed SiC-Si3N4 formulations
415(1)
7.8 SIALON-bonded SiC
415(5)
7.9 A brief overview of the contemporary SNBSC manufacturing process
420(2)
7.9.1 Basic principles of manufacture
421(1)
7.9.2 Basic steps in the production process
422(1)
7.10 SNBSC: refractory applications
422(7)
7.10.1 Iron and steel industry
423(3)
7.10.2 Nonferrous metals industry
426(3)
7.11 SNBSC as an industrial wear-resistant ceramic
429(2)
7.12 Conclusions
431(4)
References
431(4)
8 Glass-Bonded SiC (GBSC)
435(56)
8.1 Introduction to glass-bonded SiC
435(4)
8.2 Brief background to relevant ceramic armour principles
439(4)
8.2.1 Multi-hit performance
439(1)
8.2.2 Advanced munitions against which glass-bonded SiC ceramic metal composite is optimal
439(3)
8.2.3 Glass-bonded SiC ceramic metal composite as ceramic armour
442(1)
8.3 The history and evolution of glass-bonded SiC
443(8)
8.3.1 Brief history of glass-bonded SiC and the grinding wheel
444(3)
8.3.2 Brief history of glass-bonded SiC as a refractory
447(2)
8.3.3 Contemporary glass-bonded SiC technology
449(1)
8.3.4 Background to the glass-bonded SiC ceramic matrix composite development
450(1)
8.4 The materials science of glass-bonded SiC ceramic metal composite metal-reinforced-ceramic
451(12)
8.4.1 Glass-bonded SiC ceramic metal composite defined
451(1)
8.4.2 Evolution of the glass-bonded SiC ceramic metal composite technology
452(2)
8.4.3 Optimisation of the glass-bonded SiC ceramic metal composite ceramic-component
454(4)
8.4.4 Optimisation of the metal reinforcement
458(1)
8.4.5 Residual compressive stress
458(4)
8.4.6 Weight increase from metal mesh
462(1)
8.4.7 Glass-bonded SiC ceramic metal composite mass-production and commercial competitiveness
462(1)
8.5 Ballistic testing of glass-bonded SiC ceramic metal composite
463(16)
8.5.1 Multihit with full-metal-jacketed ammunition
464(2)
8.5.2 APM2: 7.62 armour-piercing vehicle armour
466(6)
8.5.3 Improvised explosive device testing
472(2)
8.5.4 Shaped-charge testing
474(4)
8.5.5 Other glass-bonded SiC ceramic metal composite ballistic testing
478(1)
8.6 General discussion of glass-bonded SiC ceramic metal composite ballistic testing
479(2)
8.6.1 Importance of glass content
479(1)
8.6.2 Commercial potential of glass-bonded SiC ceramic metal composite: lightweight vehicle armour
479(1)
8.6.3 Commercial potential of glass-bonded SiC ceramic metal composite: heavy vehicle armour
480(1)
8.7 Glass-bonded SiC ceramic metal composite as a high-impact wear-resistant ceramic
481(4)
8.8 Conclusion
485(2)
8.9 Statement regarding Australian Government Department of Defence Export Controls
487(4)
References
487(4)
9 SiC-Fibre Reinforced SiC Composites (SiC--SiC)
491(51)
9.1 Polymer-derived SiC ceramics
491(20)
9.1.1 The organosilane
492(1)
9.1.2 Polymer-derived ceramics: a paradigm shift in ceramic synthesis
493(5)
9.1.3 Forming of polymer-derived SiC ceramics
498(1)
9.1.4 Densification of polymer-derived SiC ceramics
498(1)
9.1.5 PDC-SiC: the sintering aid conundrum
499(3)
9.1.6 PDC-SiC: the solid solubility conundrum
502(4)
9.1.7 PDC SiC: microstructural and thermodynamic aspects
506(1)
9.1.8 PDC SiC: properties
507(3)
9.1.9 PDC-SiC applications
510(1)
9.2 SiC--SiC ceramic matrix composites
511(31)
9.2.1 The space race
512(1)
9.2.2 Carbon---carbon composites
512(2)
9.2.3 Ceramic matrix composites
514(1)
9.2.4 SiC fibre-reinforced alumina-matrix composites
514(2)
9.2.5 Carbon fibre reinforced SiC
516(1)
9.2.6 The SiC--SiC concept
517(2)
9.2.7 The origin of SiC fibre-reinforced SiC
519(3)
9.2.8 SiC-SiC synthesis via polymer infiltration pyrolysis
522(8)
9.2.9 SiC--SiC synthesis via chemical vapour infiltration
530(4)
9.2.10 SiC--SiC synthesis via liquid silicon infiltration
534(1)
9.2.11 Enhanced densification methods
535(2)
9.2.12 Hybrid processes for SiC--SiC ceramic matrix composites
537(1)
9.2.13 Oxidation-resistant surface barrier coatings
537(2)
9.2.14 Crack healing in SiC--SiC
539(1)
9.2.15 SiC--SiC conclusions
540(2)
References 542(7)
Index 549
Professor Ruys was a founding Director of Biomedical Engineering at the University of Sydney, Australia, between 2003 and 2018. He graduated with a BE in Ceramic Engineering in 1987 and a PhD in Ceramic Engineering in 1992 from the University of NSW, Australia. He has worked in bioceramics and advanced ceramics research for over 30 years, and has been an active participant as researcher, educator and industrial consultant for this entire time. He is not only an experienced researcher in bioceramics (ceramics for biomedical applications) but has also been an industrial consultant in the world-changing applications of armor ceramics, advanced ceramics in wear-resistance linings in mineral processing, and numerous other important industrial applications of ceramics. He has published more than 100 journal articles, over 70 conference papers, seven books and has listed 5 patents. He serves on three editorial boards and is a reviewer for 24 scientific journals. He has been teaching bioceramics, biomaterials, and medical device technology for three decades, and has also taught on dental materials, industrial ceramics, chemistry, physics, and general engineering.