Muutke küpsiste eelistusi

E-raamat: Silicon Photonics Design: From Devices to Systems

(University of British Columbia, Vancouver),
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 12-Mar-2015
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781316235225
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 154,38 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 12-Mar-2015
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781316235225
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

From design and simulation through to testing and fabrication, this hands-on introduction to silicon photonics engineering equips students with everything they need to begin creating foundry-ready designs. The text offers step-by-step tutorials, straightforward examples, illustrative source code fragments, and in-depth discussion of real-world issues and fabrication challenges, while additional resources are provided online.

From design and simulation through to testing and fabrication, this hands-on introduction to silicon photonics engineering equips students with everything they need to begin creating foundry-ready designs. In-depth discussion of real-world issues and fabrication challenges ensures that students are fully equipped for careers in industry. Step-by-step tutorials, straightforward examples, and illustrative source code fragments guide students through every aspect of the design process, providing a practical framework for developing and refining key skills. Offering industry-ready expertise, the text supports existing PDKs for CMOS UV-lithography foundry services (OpSIS, ePIXfab, imec, LETI, IME and CMC) and the development of new kits for proprietary processes and clean-room based research. Accompanied by additional online resources to support students, this is the perfect learning package for senior undergraduate and graduate students studying silicon photonics design, and academic and industrial researchers involved in the development and manufacture of new silicon photonics systems.

Arvustused

'This publication's wide variety of topics should stimulate people to read and discover the sensing potential of optical fiber and devices. This book is a comprehensive introduction to the field with a strong practical focus that undergraduate and graduate students will find useful. It could also serve as a reference for scientists and engineers who are working in the optical fiber sensing area.' Lisa Tongning Li, Optics and Photonics News

Muu info

This hands-on introduction to silicon photonics engineering equips students with everything they need to begin creating foundry-ready designs.
List of contributors xiii
Preface xv
Part I Introduction 1(46)
1 Fabless silicon photonics
3(25)
1.1 Introduction
3(2)
1.2 Silicon photonics: the next fabless semiconductor industry
5(2)
1.2.1 Historical context — Photonics
6(1)
1.3 Applications
7(3)
1.3.1 Data communication
8(2)
1.4 Technical challenges and the state of the art
10(7)
1.4.1 Waveguides and passive components
10(2)
1.4.2 Modulators
12(1)
1.4.3 Photodetectors
13(1)
1.4.4 Light sources
14(1)
1.4.5 Approaches to photonic—electronic integration
15(2)
Monolithic integration
15(1)
Multi-chip integration
16(1)
1.5 Opportunities
17(5)
1.5.1 Device engineering
17(1)
1.5.2 Photonic system engineering
17(2)
A transition from devices to systems
18(1)
1.5.3 Tools and support infrastructure
19(1)
Electronic—photonic co-design
19(1)
DFM and yield management
20(1)
1.5.4 Basic science
20(1)
1.5.5 Process standardization and a history of MPW services
20(11)
ePIXfab and Europractice
21(1)
IME
21(1)
OpSIS
21(1)
CMC Microsystems
22(1)
Other organizations
22(1)
References
22(6)
2 Modelling and design approaches
28(19)
2.1 Optical waveguide mode solver
28(3)
2.2 Wave propagation
31(8)
2.2.1 3D FDTD
31(4)
FDTD modelling procedure
32(3)
2.2.2 2D FDTD
35(1)
2.2.3 Additional propagation methods
36(2)
2D FDTD with Effective Index Method
36(1)
Beam Propagation Method (BPM)
37(1)
Eigenmode Expansion Method (EME)
37(1)
Coupled Mode Theory (CMT)
38(1)
Transfer Matrix Method (TMM)
38(1)
2.2.4 Passive optical components
38(1)
2.3 Optoelectronic models
39(1)
2.4 Microwave modelling
39(1)
2.5 Thermal modelling
40(1)
2.6 Photonic circuit modelling
40(1)
2.7 Physical layout
41(1)
2.8 Software tools integration
42(1)
References
43(4)
Part II Passive components 47(168)
3 Optical materials and waveguides
49(43)
3.1 Silicon-on-insulator
49(2)
3.1.1 Silicon
49(2)
Silicon — wavelength dependence
50(1)
Silicon — temperature dependence
50(1)
3.1.2 Silicon dioxide
51(1)
3.2 Waveguides
51(18)
3.2.1 Waveguide design
53(1)
3.2.2 1D slab waveguide — analytic method
53(1)
3.2.3 Numerical modelling of waveguides
53(1)
3.2.4 1D slab — numerical
54(3)
Convergence tests
55(2)
Parameter sweep — slab thickness
57(1)
3.2.5 Effective Index Method
57(2)
3.2.6 Effective Index Method — analytic
59(1)
3.2.7 Waveguide mode profiles — 2D calculations
60(3)
3.2.8 Waveguide width — effective index
63(2)
3.2.9 Wavelength dependence
65(1)
3.2.10 Compact models for waveguides
66(3)
3.2.11 Waveguide loss
69(1)
3.3 Bent waveguides
69(6)
3.3.1 3D FDTD bend simulations
70(3)
3.3.2 Eigenmode bend simulations
73(2)
3.4 Problems
75(2)
3.5 Code listings
77(12)
References
89(3)
4 Fundamental building blocks
92(70)
4.1 Directional couplers
92(18)
4.1.1 Waveguide mode solver approach
93(3)
Coupler-gap dependence
94(1)
Coupler-length dependence
95(1)
Wavelength dependence
95(1)
4.1.2 Phase
96(3)
4.1.3 Experimental data
99(3)
4.1.4 FDTD modelling
102(1)
FDTD versus mode solver
102(1)
4.1.5 Sensitivity to fabrication
103(2)
4.1.6 Strip waveguide directional couplers
105(1)
4.1.7 Parasitic coupling
106(9)
Delta beta coupling
108(2)
4.2 Y-branch
110(3)
4.3 Mach—Zehnder interferometer
113(2)
4.4 Ring resonators
115(2)
4.4.1 Optical transfer function
115(2)
4.4.2 Ring resonator experimental results
117(1)
4.5 Waveguide Bragg grating filters
117(26)
4.5.1 Theory
117(3)
Grating coupling coefficient
120(1)
4.5.2 Design
120(6)
Transfer Matrix Method
121(2)
Grating physical structure design
123(2)
Modelling gratings using FDTD
125(1)
4.5.3 Experimental Bragg gratings
126(4)
Strip waveguide gratings
127(1)
Rib waveguide gratings
128(1)
Grating period
129(1)
4.5.4 Empirical models for fabricated gratings
130(7)
Computation lithography models
134(2)
Additional fabrication considerations
136(1)
4.5.5 Spiral Bragg gratings
137(1)
Thermal sensitivity
138(1)
4.5.6 Phase-shifted Bragg gratings
138(2)
4.5.7 Multi-period Bragg gratings
140(1)
4.5.8 Grating-assisted contra-directional couplers
141(2)
4.6 Problems
143(1)
4.7 Code listings
144(15)
References
159(3)
5 Optical I/O
162(53)
5.1 The challenge of optical coupling to silicon photonic chips
162(1)
5.2 Grating coupler
163(19)
5.2.1 Performance
164(1)
5.2.2 Theory
165(3)
5.2.3 Design methodology
168(13)
Analytic grating coupler design
169(1)
Design using 2D FDTD simulations
170(2)
Results
172(1)
Design parameters
173(4)
Cladding and buried oxide
177(2)
Compact design — focusing
179(1)
Mask layout
180(1)
3D simulation
181(1)
5.2.4 Experimental results
181(1)
5.3 Edge coupler
182(8)
5.3.1 Nano-taper edge coupler
183(6)
Mode overlap calculation approach
183(4)
FDTD approach
187(2)
5.3.2 Edge coupler with overlay waveguide
189(28)
Eigenmode expansion method
189(1)
5.4 Polarization
190(3)
5.5 Problems
193(1)
5.6 Code listings
193(18)
References
211(4)
Part III Active components 215(96)
6 Modulators
217(42)
6.1 Plasma dispersion effect
217(1)
6.1.1 Silicon, carrier density dependence
217(1)
6.2 pn-Junction phase shifter
218(8)
6.2.1 pn-Junction carrier distribution
218(3)
6.2.2 Optical phase response
221(2)
6.2.3 Small-signal response
223(1)
6.2.4 Numerical TCAD modelling of pn-junctions
224(2)
6.3 Micro-ring modulators
226(6)
6.3.1 Ring tuneability
227(1)
6.3.2 Small-signal modulation response
228(3)
6.3.3 Ring modulator design
231(1)
6.4 Forward-biased PIN junction
232(2)
6.4.1 Variable optical attenuator
232(2)
6.5 Active tuning
234(6)
6.5.1 PIN phase shifter
235(1)
6.5.2 Thermal phase shifter
236(4)
6.6 Thermo-optic switch
240(1)
6.7 Problems
241(1)
6.8 Code listings
242(15)
References
257(2)
7 Detectors
259(36)
7.1 Performance parameters
259(5)
7.1.1 Responsivity
259(1)
7.1.2 Bandwidth
260(6)
Transit time
260(1)
RC response
261(1)
Dark current
262(2)
7.2 Fabrication
264(2)
7.3 Types of detectors
266(5)
7.3.1 Photoconductive detector
266(1)
7.3.2 PIN detector
267(1)
7.3.3 Avalanche detector
268(3)
Charge region design
270(1)
7.4 Design considerations
271(4)
7.4.1 PIN junction orientation
271(1)
7.4.2 Detector geometry
272(1)
Detector length
272(1)
Detector width
272(1)
Detector height
272(1)
7.4.3 Contacts
273(2)
Contact material
273(1)
Contact geometry
274(1)
7.4.4 External load on the detector
275(1)
7.5 Detector modelling
275(7)
7.5.1 3D FDTD optical simulations
276(3)
7.5.2 Electronic simulations
279(3)
7.6 Problems
282(1)
7.7 Code listings
283(9)
References
292(3)
8 Lasers
295(16)
8.1 External lasers
295(1)
8.2 Laser modelling
296(3)
8.3 Co-packaging
299(2)
8.3.1 Pre-made laser
299(1)
8.3.2 External cavity lasers
300(1)
8.3.3 Etched-pit embedded epitaxy
301(1)
8.4 Hybrid silicon lasers
301(2)
8.5 Monolithic lasers
303(3)
8.5.1 Ill—V Monolithic growth
303(1)
8.5.2 Germanium lasers
304(2)
8.6 Alternative light sources
306(1)
8.7 Problem
307(1)
References
307(4)
Part IV System design 311(103)
9 Photonic circuit modelling
313(36)
9.1 Need for photonic circuit modelling
313(1)
9.2 Components for system design
314(1)
9.3 Compact models
314(4)
9.3.1 Empirical or equivalent circuit models
316(1)
9.3.2 S-parameters
317(1)
9.4 Directional coupler — compact model
318(12)
9.4.1 FDTD simulations
318(2)
9.4.2 FDTD S-parameters
320(3)
Directional coupler S-parameters
321(2)
9.4.3 Empirical model — polynomial
323(1)
9.4.4 S-parameter model passivity
324(6)
Passivity assessment
324(1)
Passivity enforcement
325(5)
9.5 Ring modulator — circuit model
330(1)
9.6 Grating coupler — S-parameters
330(3)
9.6.1 Grating coupler circuits
333(1)
9.7 Code listings
333(15)
References
348(1)
10 Tools and techniques
349(19)
10.1 Process design kit (PDK)
349(13)
10.1.1 Fabrication process parameters
352(1)
Silicon thickness and etch
352(1)
GDS layer map
352(1)
Design rules
352(1)
10.1.2 Library
352(1)
10.1.3 Schematic capture
353(2)
10.1.4 Circuit export
355(1)
10.1.5 Schematic-driven layout
356(4)
10.1.6 Design rule checking
360(1)
10.1.7 Layout versus schematic
361(1)
10.2 Mask layout
362(4)
10.2.1 Components
362(1)
10.2.2 Layout for electrical and optical testing
362(2)
10.2.3 Approaches for fast GDS layout
364(1)
10.2.4 Approaches for space-efficient GDS layout
364(2)
References
366(2)
11 Fabrication
368(13)
11.1 Fabrication non-uniformity
368(11)
11.1.1 Lithography process contours
369(1)
11.1.2 Corner analysis
370(2)
11.1.3 On-chip non-uniformity, experimental results
372(9)
Ring resonators
373(4)
Grating couplers
377(2)
11.2 Problems
379(1)
References
380(1)
12 Testing and packaging
381(25)
12.1 Electrical and optical interfacing
381(8)
12.1.1 Optical interfaces
381(5)
Grating couplers
381(1)
Edge couplers
382(1)
Individual fibres
382(1)
Spot-size converter
383(1)
Fibre array
384(1)
Free-space coupling
385(1)
Fibre taper coupling
386(1)
12.1.2 Electrical interfaces
386(3)
Bond pads
386(1)
Probing
387(1)
Wire bonding
388(1)
Flip-chip bonding
388(1)
12.2 Automated optical probe stations
389(9)
12.2.1 Parts
391(2)
Sample stage
391(1)
Fibre array probe
392(1)
Electrical probes
393(1)
Microscopes
393(1)
12.2.2 Software
393(1)
12.2.3 Operation
394(3)
Loading and aligning a chip/wafer
395(1)
Aligning the fibre array
395(1)
Chip registration
396(1)
Automated device testing
396(1)
12.2.4 Optical test equipment
397(1)
12.3 Design for test
398(6)
12.3.1 Optical power budgets
400(1)
12.3.2 Layout considerations
401(1)
12.3.3 Design review and checklist
402(2)
References
404(2)
13 Silicon photonic system example
406(8)
13.1 Wavelength division multiplexed transmitter
406(6)
13.1.1 Ring-based WDM transmitter architectures
406(2)
13.1.2 Common-bus WDM transmitter
408(2)
13.1.3 Mod-Mux WDM transmitter
410(1)
13.1.4 Conclusion
411(1)
References
412(2)
Index 414
Lukas Chrostowski is Associate Professor of Electrical and Computer Engineering at the University of British Columbia. He is the Program Director of the NSERC CREATE Silicon Electronic-Photonic Integrated Circuits (Si-EPIC) training program, has been teaching silicon photonics courses and workshops since 2008, and has been awarded the Killiam Teaching Prize (2014). Michael Hochberg is Director of Architecture and Strategy for Coriant Advanced Technology Group, based in Manhattan, New York, where he holds a visiting appointment at Columbia University. He has held faculty positions at the University of Washington, University of Delaware and National University of Singapore, and was Director of the OpSIS foundry-access service. He has co-founded several startups, including Simulant and Luxtera and received a Presidential Early Career Award in Science and Engineering (2009).