Muutke küpsiste eelistusi

E-raamat: Similarity-Based Pattern Recognition: Second International Workshop, SIMBAD 2013, York, UK, July 3-5, 2013, Proceedings

Edited by , Edited by
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Computer Science 7953
  • Ilmumisaeg: 28-Jun-2013
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783642391408
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Computer Science 7953
  • Ilmumisaeg: 28-Jun-2013
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783642391408

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the proceedings of the Second International Workshop on Similarity Based Pattern Analysis and Recognition, SIMBAD 2013, which was held in York, UK, in July 2013. The 18 papers presented were carefully reviewed and selected from 33 submissions. They cover a wide range of problems and perspectives, from supervised to unsupervised learning, from generative to discriminative models, from theoretical issues to real-world practical applications, and offer a timely picture of the state of the art in the field.
Pattern Learning and Recognition on Statistical Manifolds: An
Information-Geometric Review.- Dimension Reduction Methods for Image Pattern
Recognition.- Efficient Regression in Metric Spaces via Approximate Lipschitz
Extension.- Data Analysis of (Non-)Metric Proximities at Linear Costs.- On
the Informativeness of Asymmetric Dissimilarities.- Information-Theoretic
Dissimilarities for Graphs.- Information Theoretic Pairwise Clustering.-
Correlation Clustering with Stochastic Labellings.- Break and Conquer:
Efficient Correlation Clustering for Image Segmentation.- Multi-task
Averaging via Task Clustering.- Modeling and Detecting Community
Hierarchies.- Graph Characterization Using Gaussian Wave Packet Signature.-
Analysis of the Schrödinger Operator in the Context of Graph
Characterization.- Attributed Graph Similarity from the Quantum
Jensen-Shannon Divergence.- Entropy and Heterogeneity Measures for Directed
Graphs.- Fast Learning of Gamma Mixture Models with k-MLE.- Exploiting
Geometry in Counting Grids.- On the Dissimilarity Representation and
Prototype Selection for Signature-Based Bio-cryptographic Systems.- A
Repeated Local Search Algorithm for BiClustering of Gene Expression Data.