ei ole lubatud
ei ole lubatud
Digitaalõiguste kaitse (DRM)
Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).
Vajalik tarkvara
Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)
PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )
Seda e-raamatut ei saa lugeda Amazon Kindle's.
1. Python as a Powerful Calculator. 1.1. BODMAS. 1.2. Fractions: Symbolic Computation. 1.3. Powers (Exponentiation) and Roots. 1.4. The Math Library (Module)
Chapter. 2. Simple Programming With Python. 2.1. Lists, Tuples, Sets and Dictionaries. 2.2. Defining Functions (Programming). 2.3. For and While Loops. 2.4. Conditional Statements, If, Elif, Else. 3. The Turtle Library. 3.1. The Cantor Set Fractal. 3.2. The Koch Snowflake. 3.3. A Bifurcating Tree. 3.4. The Sierpinski Triangle. 4. NumPy and MatPlotLib. 4.1. Numerical Python (Numpy). 4.2. MatPlotLib. 4.3. Scatter Plots. 4.4. Surface Plots. 5. Google Colab, SymPy and GitHub. 5.1. Google Colab. 5.2. Formatting Notebooks. 5.3. Symbolic Python (Sympy). 5.4. GitHub. 6. Python for Mathematics. 6.1. Basic Algebra. 6.2. Solving Equations. 6.3. Functions (Mathematics). 6.4. Differentiation and Integration (Calculus).
7. Introduction to Cryptography. 7.1. The Caesar Cipher. 7.2. The XOR Cipher. 7.3. The Rivest-Shamir-Adleman (RSA) Cryptosystem. 7.4. Simple RSA Algorithm Example. 8. An Introduction to Artificial Intelligence. 8.1. Artificial Neural Networks. 8.2. The And/Or and XOR Gate Anns. 8.3. The Backpropagation Algorithm. 8.4. Boston Housing Data. 9. An Introduction to Data Science. 9.1. Introduction to Pandas. 9.2. Load, Clean and Preprocess the Data. 9.3. Exploring the Data. 9.4. Violin, Scatter and Hexagonal Bin Plots. 10. An Introduction to Object Oriented Programming. 10.1. Classes and Objects. 10.2. Encapsulation. 10.3. Inheritance. 10.4. Polymorphism.