Muutke küpsiste eelistusi

E-raamat: Simplifying Medical Ultrasound: 5th International Workshop, ASMUS 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 6, 2024, Proceedings

Edited by , Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 61,74 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the proceedings of the 5th International Workshop on Simplifying Medical Ultrasound, ASMUS 2024, held in conjunction with MICCAI 2024, the 27th International Conference on Medical Image Computing and Computer-Assisted Intervention. The conference took place in Marrakesh, Morocco on October 6, 2024.





The 21 full papers presented in this book were carefully reviewed and selected from 34 submissions. They were organized in topical sections as follows: Image Acquisition, Synthesis and Enhancement; Tracking, Registration and Image-guided Interventions; Segmentation; and Classification and Detection.
.- Image Acquisition, Synthesis and Enhancement.

.- Unsupervised Physics-Inspired Shear Wave Speed Estimation in Ultrasound
Elastography.

.- Simplifying Prostate Elastography Using Micro-Ultrasound and Transfer
Function Imaging.

.- Do High-Performance Image-to-Image Translation Networks Enable the
Discovery of Radiomic Features? Application to MRI Synthesis from Ultrasound
in Prostate Cancer.

.- PHOCUS: Physics-Based Deconvolution for Ultrasound Resolution
Enhancement.

.- Tracking, Registration and Image-guided Interventions.

.- PIPsUS: Self-Supervised Point Tracking in Ultrasound.

.- Structure-aware World Model for Probe Guidance via Large-scale
Selfsupervised Pre-train.

.- An Evaluation of Low-Cost Hardware on 3D Ultrasound Reconstruction
Accuracy.

.- Learning to Match 2D Keypoints Across Preoperative MR and Intraoperative
Ultrasound.

.- Automatic facial axes standardization of 3D fetal ultrasound images.

.- Segmentation.

.- C-TRUS: A Novel Dataset and Initial Benchmark For Colon Wall Segmentation
in Transabdominal Ultrasound.

.- Label Dropout: Improved Deep Learning Echocardiography Segmentation Using
Multiple Datasets With Domain Shift and Partial Labelling.

.- Introducing Anatomical Constraints in Mitral Annulus Segmentation in
Transesophageal Echocardiography.

.- Interactive Segmentation Model for Placenta Segmentation from 3D
Ultrasound Images.

.- Enhanced Uncertainty Estimation in Ultrasound Image Segmentation with
MSU-Net.

.- Classification and Detection.

.- Multi-Site Class-Incremental Learning with Weighted Experts in
Echocardiography.

.- Masked autoencoders for medical ultrasound videos using ROI-aware
masking.

.- Uncertainty-based Multi-modal Learning for Myocardial Infarction Diagnosis
using Echocardiography and Electrocardiograms.

.- Fetal Ultrasound Video Representation Learning using Contrastive Rubiks
Cube Recovery.

.- LoRIS - Weakly-supervised Anomaly Detection for Ultrasound Images.

.- Unsupervised Detection of Fetal Brain Anomalies using Denoising Diffusion
Models.

.- Diffusion Models for Unsupervised Anomaly Detection in Fetal Brain
Ultrasound.