Muutke küpsiste eelistusi

E-raamat: Singular Bilinear Integrals

(The Univ Of New South Wales, Australia)
  • Formaat: 252 pages
  • Ilmumisaeg: 18-Jan-2017
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789813207592
  • Formaat - PDF+DRM
  • Hind: 76,05 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 252 pages
  • Ilmumisaeg: 18-Jan-2017
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789813207592

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Jefferies develops the integration of vector valued functions with respect to vector valued measures, especially spectral measures, in view of applications in operator theory, scattering theory, and semi-classical approximation in quantum physics. He also develops new techniques for bilinear integration for cases in which the classical approach does not apply. He covers decoupled bilinear integration, operator traces, stochastic integration, scattering theory, random evolutions, Cwikel-Lieb-Rozenbljum (CLR) inequality, and operator equations. Annotation ©2017 Ringgold, Inc., Portland, OR (protoview.com)
Preface vii
1 Introduction
1(40)
1.1 Vector measures
6(4)
1.2 Integration of scalar functions with respect to a vector valued measure
10(2)
1.3 Integration of vector valued functions with respect to a scalar measure
12(3)
1.3.1 The Pettis integral
13(1)
1.3.2 The Bochner integral
14(1)
1.4 Tensor products
15(9)
1.4.1 Injective and projective tensor products
17(4)
1.4.2 Grothendieck's inequality
21(3)
1.5 Semivariation
24(11)
1.5.1 Semivariation in Lp-spaces
26(6)
1.5.2 Semivariation of positive operator valued measures
32(3)
1.6 Bilinear integration after Bartle and Dobrakov
35(6)
2 Decoupled bilinear integration
41(30)
2.1 Bilinear integration in tensor products
44(9)
2.2 Order bounded measures
53(1)
2.3 The bilinear Fubini theorem
54(5)
2.4 Examples of bilinear integrals
59(12)
3 Operator traces
71(30)
3.1 Trace class operators
72(2)
3.2 The Hardy-Littlewood maximal operator
74(1)
3.3 The Banach function space of traceable functions
75(8)
3.4 Traceable operators on Banach function spaces
83(11)
3.4.1 Lusin filtrations
91(3)
3.4.2 Connection with other generalised traces
94(1)
3.5 Hermitian positive operators
94(7)
4 Stochastic integration
101(22)
4.1 Background on probability and discrete processes
101(10)
4.1.1 Conditional probability and expectation
104(2)
4.1.2 Discrete Martingales
106(3)
4.1.3 Discrete stopping times
109(2)
4.2 Stochastic processes
111(1)
4.3 Brownian motion
112(3)
4.3.1 Some properties of Brownian paths
114(1)
4.4 Stochastic integration of vector valued processes
115(8)
5 Scattering theory
123(20)
5.1 Time-dependent scattering theory
123(2)
5.2 Stationary state scattering theory
125(3)
5.3 Time-dependent scattering theory for bounded Hamiltonians and potentials
128(3)
5.4 Bilinear integrals in scattering theory
131(7)
5.5 Application to the Lippmann-Schwinger equations
138(5)
6 Random evolutions
143(28)
6.1 Evolution processes
143(5)
6.2 Measurable functions
148(2)
6.3 Progressive measurability
150(7)
6.4 Operator bilinear integration
157(10)
6.5 Random evolutions
167(4)
7 CLR inequality
171(20)
7.1 Asymptotic estimates for bound states
171(4)
7.2 Lattice traces for positive operators
175(9)
7.3 The CLR inequality for dominated semigroups
184(7)
8 Operator equations
191(38)
8.1 Operator equations
193(9)
8.2 Double operator integrals
202(7)
8.3 Traces of double operator integrals
209(12)
8.3.1 Schur multipliers and Grothendieck's inequality
212(2)
8.3.2 Schur multipliers on measure spaces
214(7)
8.4 The spectral shift function
221(8)
Bibliography 229(8)
Index 237