|
Part I Introductory Chapter |
|
|
|
1 Basic Sinusoidal Oscillators and Waveform Generators Using IC Building Blocks |
|
|
3 | (70) |
|
|
3 | (1) |
|
1.2 Classical Sinusoidal Oscillators |
|
|
4 | (10) |
|
1.2.1 Wien Bridge Oscillator |
|
|
4 | (2) |
|
1.2.2 RC Phase-Shift Oscillators |
|
|
6 | (3) |
|
1.2.3 Colpitts and Hartley Oscillators |
|
|
9 | (1) |
|
1.2.4 A Family of Canonic Single-Op-Amp Oscillators |
|
|
10 | (2) |
|
|
12 | (2) |
|
1.2.6 A Band-Pass Filter-Tuned Oscillator |
|
|
14 | (1) |
|
1.3 Quadrature and Multiphase Sinusoidal Oscillators |
|
|
14 | (8) |
|
1.3.1 Quadrature Oscillators |
|
|
15 | (3) |
|
1.3.2 Multiphase Oscillators |
|
|
18 | (4) |
|
1.4 Some Other Sinusoidal Oscillator Topologies |
|
|
22 | (5) |
|
1.4.1 An Oscillator Based Upon All-Pass Filters |
|
|
24 | (1) |
|
1.4.2 Two-Section Multiple Op-Amp Oscillators |
|
|
25 | (2) |
|
1.5 Some Common Methods of Analyzing Sinusoidal Oscillators |
|
|
27 | (3) |
|
1.5.1 Analysis Based Upon the Closed-Loop Characteristic Equation |
|
|
28 | (1) |
|
1.5.2 Analysis by Finding CE by Ungrounding Any Element(s)/Terminal(s) |
|
|
28 | (1) |
|
1.5.3 State Variable Analysis of Sinusoidal Oscillators |
|
|
29 | (1) |
|
1.6 Oscillator Synthesis Using ±RLC Models |
|
|
30 | (4) |
|
1.7 Nonsinusoidal Waveform Generators Using IC Op-Amps, IC Timers, and Op-Amp Timer Combinations |
|
|
34 | (6) |
|
1.7.1 The Op-Amp-Based Schmitt Trigger and the Astable Multivibrator |
|
|
34 | (1) |
|
1.7.2 Square/Triangular Waveform Generator |
|
|
35 | (1) |
|
1.7.3 The Monostable Multivibrator |
|
|
36 | (1) |
|
1.7.4 Synthesis of Waveform Generators in Phase Plane |
|
|
37 | (2) |
|
1.7.5 Quadrature Oscillators for Generating Square and Triangular Waveforms |
|
|
39 | (1) |
|
1.8 Multivibrators and Waveform Generators Using IC 555 Timer |
|
|
40 | (17) |
|
1.8.1 Astable Multivibrators |
|
|
42 | (6) |
|
1.8.2 Monostable Multivibrators |
|
|
48 | (2) |
|
1.8.3 Sawtooth Waveform Generators |
|
|
50 | (2) |
|
1.8.4 Tone-Burst Generator |
|
|
52 | (1) |
|
1.8.5 Voltage-Controlled Oscillators |
|
|
53 | (4) |
|
1.9 Specialized Square Wave Generators for Measurement Applications |
|
|
57 | (6) |
|
1.10 IC Function Generators |
|
|
63 | (2) |
|
|
63 | (1) |
|
1.10.2 ICL8038 IC Function Generator |
|
|
64 | (1) |
|
|
65 | (8) |
|
|
66 | (7) |
|
Part II Various kinds of Sinusoidal Oscillators |
|
|
|
2 Single-Element-Controlled and Other Varieties of Op-Amp Sinusoidal Oscillators |
|
|
73 | (70) |
|
|
73 | (1) |
|
2.2 Some Earlier Variable-Frequency Single-Op-Amp Oscillators |
|
|
74 | (1) |
|
2.3 Two-Op-Amp-Based Single-Resistance-Controlled Oscillators (SRCOs) |
|
|
75 | (6) |
|
2.3.1 Oscillator Realization Using the Concept of FDNR |
|
|
76 | (1) |
|
2.3.2 Single-Resistance-Controlled/Voltage-Controlled Oscillators (VCOs) |
|
|
77 | (2) |
|
2.3.3 Modified Single-Element-Controlled Wien Bridge Oscillators |
|
|
79 | (1) |
|
2.3.4 Two-Op-Amp SRCO Employing Simulated Inductors |
|
|
79 | (2) |
|
2.4 Single-Op-Amp-Based Single-Capacitor-Controlled Oscillator |
|
|
81 | (1) |
|
2.5 Single-Op-Amp-Based SRCOs |
|
|
82 | (11) |
|
2.5.1 Single-Op-Amp-Based Single-Resistance-Controlled Oscillator |
|
|
82 | (2) |
|
2.5.2 Identification and Design of Single-Amplifier SRCOs |
|
|
84 | (3) |
|
2.5.3 Derivation of Single-Op-Amp SRCOs Using Boutin's Transformations |
|
|
87 | (1) |
|
2.5.4 Bandopadhyaya's SRCO and Williams' Simplified Version |
|
|
87 | (2) |
|
2.5.5 SRCOs: A Network Synthetic Approach |
|
|
89 | (3) |
|
2.5.6 The Complete Family of Single-Op-Amp SRCOs |
|
|
92 | (1) |
|
2.6 SRCOs Using Grounded Capacitors |
|
|
93 | (7) |
|
2.6.1 Three-Op-Amp SRCO Employing Grounded Capacitors |
|
|
93 | (4) |
|
|
97 | (1) |
|
2.6.3 Single-Op-Amp SRCOs Employing All Grounded Capacitors |
|
|
98 | (1) |
|
2.6.4 Single-Op-Amp-Two-GC SRCO |
|
|
99 | (1) |
|
2.6.5 A Family of Single-Op-Amp-Two-GC SRCOs |
|
|
100 | (1) |
|
2.7 Scaled-Frequency Oscillators |
|
|
100 | (6) |
|
2.8 Sinusoidal Oscillators Exhibiting Linear Tuning Laws |
|
|
106 | (3) |
|
2.9 SRCOs Using Unity Gain Amplifiers |
|
|
109 | (8) |
|
2.10 Oscillators with Extended Operational Frequency Range Using Active Compensation and Composite Amplifiers |
|
|
117 | (5) |
|
2.11 Active-R, Partially Active-R, and Active-C Oscillators Using Op-Amp Compensation Poles |
|
|
122 | (10) |
|
2.11.1 Three-Op-Amp Active-R Oscillators |
|
|
123 | (3) |
|
2.11.2 Two-Op-Amp Active-R Sinusoidal Oscillators |
|
|
126 | (2) |
|
2.11.3 Active-C Sinusoidal Oscillators |
|
|
128 | (1) |
|
2.11.4 Partially Active-R Oscillators |
|
|
129 | (3) |
|
2.12 Op-Amp-Based VCOs with Linear Tuning Laws |
|
|
132 | (3) |
|
|
135 | (8) |
|
|
136 | (7) |
|
3 Electronically Controllable OTA-C and Gm-C Sinusoidal Oscillators |
|
|
143 | (32) |
|
|
143 | (1) |
|
3.2 OTA-C Sinusoidal Oscillators |
|
|
144 | (12) |
|
3.2.1 Four-OTA-C Grounded-Capacitor Oscillators |
|
|
146 | (3) |
|
3.2.2 Three-OTA-C Oscillators |
|
|
149 | (3) |
|
3.2.3 Two-OTA-C Oscillators |
|
|
152 | (1) |
|
3.2.4 OTA-C Quadrature Oscillators |
|
|
152 | (4) |
|
|
156 | (2) |
|
3.3.1 Two-OTA-RC Oscillators |
|
|
156 | (1) |
|
3.3.2 Single-OTA RC Oscillators |
|
|
157 | (1) |
|
3.4 Active-Only OTA-Based Oscillators |
|
|
158 | (4) |
|
3.5 Electronically Controlled Current-Mode Oscillators Using MO-OTAs |
|
|
162 | (2) |
|
3.6 CMOS Implementation of OTA-C Oscillators |
|
|
164 | (5) |
|
|
169 | (6) |
|
|
170 | (5) |
|
4 Sinusoidal Oscillators Using Current Conveyors |
|
|
175 | (38) |
|
|
175 | (1) |
|
|
176 | (6) |
|
4.3 SRCOs Employing Grounded Capacitors |
|
|
182 | (6) |
|
4.4 SRCOs Employing All Grounded Passive Elements |
|
|
188 | (5) |
|
4.5 Quadrature and Multiphase Sinusoidal Oscillators |
|
|
193 | (9) |
|
4.6 SRCOs with Explicit Current Outputs |
|
|
202 | (3) |
|
4.7 SRCOs with Grounded Capacitors and Reduced Effect of Parasitic Impedances of CCIIs |
|
|
205 | (1) |
|
4.8 Sinusoidal Oscillators with Fully uncoupled Tuning Laws |
|
|
206 | (2) |
|
|
208 | (5) |
|
|
209 | (4) |
|
5 Realization of Sinusoidal Oscillators Using Current Feedback Op-Amps |
|
|
213 | (56) |
|
|
213 | (1) |
|
5.2 Realization of Single-Element-Controlled Oscillators Using Modem Circuit Building Blocks |
|
|
214 | (1) |
|
5.3 Wien Bridge Oscillator Using a CFOA |
|
|
214 | (2) |
|
5.4 Realization of Single-Resistance-Controlled Oscillators Using a Single CFOA |
|
|
216 | (3) |
|
5.5 A Novel SRCO Employing Grounded Capacitors |
|
|
219 | (3) |
|
5.6 A Systematic State-Variable Synthesis of Two-CFOA-Based SRCOs |
|
|
222 | (3) |
|
5.7 Some Other Two-CFOA Sinusoidal Oscillator Configurations |
|
|
225 | (7) |
|
5.8 Design of SRCOs Using CFOA Poles |
|
|
232 | (5) |
|
5.9 Quadrature and Multiphase Oscillators Using CFOAs |
|
|
237 | (1) |
|
5.10 SRCOs Providing Explicit Current Output |
|
|
238 | (9) |
|
5.10.1 CFOA SRCOs Exhibiting Fully Uncoupled Tuning Laws |
|
|
244 | (3) |
|
5.11 Voltage-Controlled Oscillators Using CFOAs and FET-Based VCRs |
|
|
247 | (2) |
|
5.12 Realization of Linear VCOs Using CFOAs |
|
|
249 | (6) |
|
5.13 Synthesis of Single-CFOA-Based VCOs Incorporating the Voltage Summing Property of Analog Multipliers |
|
|
255 | (6) |
|
|
261 | (8) |
|
Appendix 1 Some Recent Contributions to CFOA-Based Oscillators |
|
|
261 | (1) |
|
Quadrature Oscillators Using Two CFOAs and Four Passive Components |
|
|
261 | (1) |
|
New VLF Oscillators Using a Single CFOA |
|
|
262 | (1) |
|
Single CFOA-Based Oscillator Capable of Absorbing all Parasitic Impedances |
|
|
263 | (1) |
|
|
264 | (5) |
|
6 Sinusoidal Oscillator Realizations Using Modern Electronic Circuit Building Blocks |
|
|
269 | (98) |
|
|
269 | (1) |
|
6.2 Some Prominent Modem Building Blocks |
|
|
270 | (20) |
|
6.2.1 Different Variants of the Current Conveyors |
|
|
271 | (12) |
|
6.2.2 Some Other Modem Active Building Blocks |
|
|
283 | (7) |
|
6.3 Sinusoidal Oscillator Realization Using Different Variants of Current Conveyors |
|
|
290 | (17) |
|
6.3.1 A Dual-Mode Sinusoidal Oscillator Using a Single OFCC |
|
|
290 | (1) |
|
6.3.2 DOCCII/MOCCII-Based VM/CM QO |
|
|
291 | (2) |
|
6.3.3 Oscillators Using DDCCs |
|
|
293 | (2) |
|
6.3.4 Oscillators Realized with DVCCs |
|
|
295 | (4) |
|
6.3.5 Oscillators Using Third-Generation Current Conveyors (CCIII) |
|
|
299 | (1) |
|
6.3.6 ICCII-Based Oscillators |
|
|
300 | (4) |
|
6.3.7 Oscillators Using DXCCII |
|
|
304 | (1) |
|
|
305 | (2) |
|
6.4 Sinusoidal Oscillator Realization Using Other Modern Electronic Circuit Building Blocks |
|
|
307 | (42) |
|
6.4.1 Unity Gain VF and Unity Gain CF-Based Sinusoidal Oscillators |
|
|
307 | (5) |
|
6.4.2 Oscillators Using FTFNs/OMAs |
|
|
312 | (3) |
|
6.4.3 Oscillators Using DDAs |
|
|
315 | (6) |
|
6.4.4 Oscillators Using Modified CFOAs |
|
|
321 | (4) |
|
6.4.5 Oscillators Using CDBAs |
|
|
325 | (2) |
|
6.4.6 Oscillators Using CDTAs |
|
|
327 | (4) |
|
6.4.7 Oscillators Using CFTAs |
|
|
331 | (3) |
|
6.4.8 Oscillators Using CCTAs |
|
|
334 | (1) |
|
6.4.9 Oscillators Using CBTAs |
|
|
334 | (2) |
|
6.4.10 Oscillators Using DBTAs |
|
|
336 | (1) |
|
6.4.11 Oscillators Using Current-Mode Op-Amps |
|
|
336 | (2) |
|
6.4.12 Oscillators Using Programmable Current Amplifiers/Current Differencing Units and Current Mirrors |
|
|
338 | (2) |
|
6.4.13 Oscillators Using VDIBAs |
|
|
340 | (1) |
|
6.4.14 Oscillator Using VD-DIBA |
|
|
341 | (2) |
|
6.4.15 Oscillators Using OTRAs |
|
|
343 | (6) |
|
|
349 | (18) |
|
|
350 | (17) |
|
7 Switched-Capacitor, Switched-Current, and MOSFET-C Sinusoidal Oscillators |
|
|
367 | (28) |
|
|
367 | (1) |
|
7.2 Switched-Capacitor Oscillators |
|
|
368 | (9) |
|
7.3 Switched-Current Sinusoidal Oscillators |
|
|
377 | (2) |
|
7.4 Sinusoidal Oscillator Using an Alternative Form of Capacitor-Switching |
|
|
379 | (2) |
|
7.5 MOSFET-C Sinusoidal Oscillators |
|
|
381 | (9) |
|
7.5.1 MOSFET-C Oscillators Using DDAs |
|
|
381 | (2) |
|
7.5.2 MOSFET-C Oscillators Using CFOAs |
|
|
383 | (3) |
|
7.5.3 MOSFET-C Oscillators Using OTRAs |
|
|
386 | (2) |
|
7.5.4 MOSFET-C Oscillators Using Inverting Third-Generation Current Conveyors |
|
|
388 | (1) |
|
7.5.5 MOSFET-C Oscillators Using Dual-X CCII |
|
|
389 | (1) |
|
7.6 Switched-Capacitor Voltage-Controlled Relaxation Oscillators |
|
|
390 | (2) |
|
|
392 | (3) |
|
|
392 | (3) |
|
8 Current-Controlled Sinusoidal Oscillators Using Current-Controllable Building Blocks |
|
|
395 | (30) |
|
|
395 | (1) |
|
8.2 CCOs Using Second-Generation Controlled Current Conveyors (CCCII) |
|
|
396 | (5) |
|
8.3 CCOs Using CC-CFOAs and Their Variants |
|
|
401 | (1) |
|
|
402 | (5) |
|
|
407 | (5) |
|
|
412 | (5) |
|
|
417 | (8) |
|
|
418 | (7) |
|
9 Bipolar and CMOS Translinear, Log-Domain, and Square-Root Domain Sinusoidal Oscillators |
|
|
425 | (22) |
|
|
425 | (1) |
|
9.2 Log-Domain Oscillators |
|
|
426 | (3) |
|
9.3 Square-Root Domain Oscillators |
|
|
429 | (2) |
|
9.4 Current-Mode Oscillator Employing/t Integrators |
|
|
431 | (2) |
|
9.5 Log-Domain Quadrature/Multiphase Oscillators |
|
|
433 | (2) |
|
9.6 Log-Domain Multiphase Oscillators Using Exponential Transconductor Cells |
|
|
435 | (4) |
|
9.7 Square-Root Domain Multiphase Oscillators |
|
|
439 | (2) |
|
9.8 Sinh-Domain Multiphase Sinusoidal Oscillators |
|
|
441 | (3) |
|
|
444 | (3) |
|
|
445 | (2) |
|
10 Generation of Equivalent Oscillators Using Various Network Transformations |
|
|
447 | (30) |
|
|
447 | (1) |
|
10.2 Nullor-Based Transformations of Op-Amp-RC Sinusoidal Oscillators |
|
|
448 | (7) |
|
10.3 Application of Network Transposition in Deriving Equivalent Forms of OTA-C Oscillators |
|
|
455 | (1) |
|
10.4 Derivation of Equivalent Forms of OTA-RC Oscillators Using the Nullor Approach |
|
|
456 | (11) |
|
10.5 Derivation of Oscillators Through Network Transformations Based on Terminal Interchanges |
|
|
467 | (1) |
|
10.6 Transformation of Biquadratic Band-Pass Filters into Sinusoidal Oscillators |
|
|
468 | (3) |
|
10.7 Transformation of Oscillators Involving Device Interchanges |
|
|
471 | (1) |
|
|
472 | (5) |
|
|
473 | (4) |
|
11 Various Performance Measures, Figures of Merit, and Amplitude Stabilization/Control of Oscillators |
|
|
477 | (18) |
|
|
477 | (1) |
|
11.2 Start-Up of Oscillations |
|
|
477 | (1) |
|
11.3 The Various Figures of Merit and Characterizing Parameters of Oscillators and Waveform Generators |
|
|
478 | (2) |
|
11.3.1 Harmonic Distortion |
|
|
478 | (1) |
|
11.3.2 Frequency Stability |
|
|
479 | (1) |
|
11.3.3 Phase Noise, Jitter Noise and 1/f Noise in Oscillators |
|
|
479 | (1) |
|
11.4 Amplitude Stabilization and Control |
|
|
480 | (9) |
|
11.4.1 Amplitude Stabilization/Control Using Analog Multipliers |
|
|
481 | (2) |
|
11.4.2 Amplitude Control Through Control of Initial Conditions |
|
|
483 | (2) |
|
11.4.3 Amplitude Control Through Biasing-Voltage Control |
|
|
485 | (1) |
|
11.4.4 Fast Control of Amplitude of Oscillations |
|
|
486 | (2) |
|
11.4.5 Amplitude Control in Current-Mode Oscillators |
|
|
488 | (1) |
|
|
489 | (6) |
|
|
489 | (6) |
|
Part III Non-Sinusoidal Waveform Generators and Relaxation Oscillators |
|
|
|
12 Non-sinusoidal Waveform Generators and Multivibrators Using OTAs |
|
|
495 | (30) |
|
|
495 | (1) |
|
12.2 Current-Controlled Oscillators Using Op-Amps and OTAs |
|
|
495 | (12) |
|
12.2.1 Operation of the OTA in Saturation |
|
|
496 | (1) |
|
12.2.2 Linear Current-Controlled Square/Triangular Wave Generator |
|
|
497 | (2) |
|
12.2.3 Improved Temperature-Insensitive VCO |
|
|
499 | (3) |
|
12.2.4 A Triangular/Square Wave VCO Using Two OTAs |
|
|
502 | (1) |
|
12.2.5 Current-Controlled Oscillator Using Only a Single OTA |
|
|
503 | (1) |
|
12.2.6 An Entirely OTA-Based Schmitt Trigger and Square/Triangular Wave Generator |
|
|
504 | (1) |
|
12.2.7 Square Wave Generator Using a DO-OTA |
|
|
505 | (2) |
|
12.3 Current-Controlled Saw-Tooth Generators |
|
|
507 | (3) |
|
12.4 Pulse Wave Form Generator |
|
|
510 | (1) |
|
12.5 Monostable Multivibrators Using OTAs |
|
|
511 | (7) |
|
12.5.1 Current-Controlled Monostable Multivibrator |
|
|
511 | (1) |
|
12.5.2 Monostable Multivibrators with Current Tuning Properties |
|
|
512 | (3) |
|
12.5.3 Current-Controlled Monostable Multivibrator with Retriggerable Function |
|
|
515 | (2) |
|
12.5.4 Current-Tunable Monostable Multivibrator Using Only a Single OTA |
|
|
517 | (1) |
|
12.6 Pulse Width Modulation Circuits Using OTAs |
|
|
518 | (3) |
|
|
521 | (4) |
|
|
522 | (3) |
|
13 Waveform Generators Using Current Conveyors and CFOAs |
|
|
525 | (16) |
|
|
525 | (1) |
|
13.2 Schmitt Trigger and Waveform Generators Using CCs |
|
|
525 | (8) |
|
13.2.1 Schmitt Trigger by Di Cataldo, Palumbo, and Pennisi |
|
|
526 | (1) |
|
13.2.2 Square Wave Generator Proposed by Abuelma'atti and Al-Absi |
|
|
527 | (1) |
|
13.2.3 Srinivasulu's Schmitt Trigger/Pulse Squaring Circuit |
|
|
528 | (2) |
|
13.2.4 Square Wave Generator Proposed by Marcellis, Carlo, Ferri, and Stornelli |
|
|
530 | (1) |
|
13.2.5 Square/Rectangular Wave Generator Proposed by Almashary and Alhokail |
|
|
531 | (2) |
|
13.3 Schmitt Trigger and Non-Sinusoidal Waveform Generators Using CFOAs |
|
|
533 | (6) |
|
13.3.1 CFOA Version of the CCII+ Based Schmitt Trigger of Di Cataldo, Palumbo, and Pennisi |
|
|
533 | (2) |
|
13.3.2 Srinivasulu's Schmitt Trigger |
|
|
535 | (2) |
|
13.3.3 Minaei--Yuce Square/Triangular Wave Generator |
|
|
537 | (1) |
|
13.3.4 Abuelma'atti and Al-Shahrani Circuit |
|
|
538 | (1) |
|
|
539 | (2) |
|
|
540 | (1) |
|
14 Nonsinusoidal Waveform Generators/Relaxation Oscillators Using Other Building Blocks |
|
|
541 | (34) |
|
|
541 | (1) |
|
14.2 Relaxation Oscillators Using OTRAs |
|
|
542 | (7) |
|
14.2.1 Schmitt Trigger Using OTRA |
|
|
542 | (2) |
|
14.2.2 Square Wave Generator Using a Single OTRA |
|
|
544 | (3) |
|
14.2.3 Current-Mode Monostable Multivibrators Using OTRAs |
|
|
547 | (2) |
|
14.3 Multivibrators and Square/Triangular Wave Generators Using DVCCs |
|
|
549 | (11) |
|
14.3.1 Square/Triangular Wave and Saw-Tooth Wave Generator Using DVCC |
|
|
549 | (2) |
|
14.3.2 Switch-Controllable Bistable Multivibrator |
|
|
551 | (3) |
|
14.3.3 Single DVCC-Based Monostable Multivibrators |
|
|
554 | (2) |
|
14.3.4 Relaxation Oscillators Using DVCCs |
|
|
556 | (2) |
|
14.3.5 DO-DVCC-Based Square/Triangular Wave Generator |
|
|
558 | (2) |
|
14.4 Multivibrators Using CDBA |
|
|
560 | (3) |
|
14.5 Electronically Controllable Schmitt-Trigger and Waveform Generators Using MO-CCCCTA |
|
|
563 | (2) |
|
14.6 Electronically Controllable Current-Mode Schmitt Trigger and Relaxation Oscillators Using MO-CCCDTA |
|
|
565 | (5) |
|
14.7 Miscellaneous Other Waveform Generators Using Other Building Blocks |
|
|
570 | (1) |
|
|
570 | (5) |
|
|
571 | (4) |
|
Part IV Current directions, Concluding remarks and additional references for further reading |
|
|
|
15 Current Directions of Research and Concluding Remarks |
|
|
575 | (14) |
|
|
575 | (1) |
|
15.2 Current Directions of Research on Oscillators and Waveform Generators |
|
|
576 | (7) |
|
15.2.1 Oscillator Synthesis Using Pathological Elements |
|
|
576 | (1) |
|
15.2.2 Fractional-Order Sinusoidal Oscillators |
|
|
577 | (1) |
|
15.2.3 Memristor-Based Oscillators |
|
|
578 | (1) |
|
15.2.4 Sine Wave, Square Wave, and Triangular Wave Generation from Chua's Chaotic Oscillator |
|
|
579 | (4) |
|
15.2.5 Counter Examples to Barkhausen Criterion and Oscillator Start-Up Issues |
|
|
583 | (1) |
|
|
583 | (3) |
|
|
586 | (3) |
|
|
587 | (2) |
About the Authors |
|
589 | (4) |
Additional References for Further Reading |
|
593 | (18) |
Index |
|
611 | |