Muutke küpsiste eelistusi

E-raamat: Sliding Mode Control: Theory And Applications

  • Formaat - EPUB+DRM
  • Hind: 227,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

In the formation of any control problem there will be discrepancies between the actual plant and the mathematical model for controller design. Sliding mode control theory seeks to produce controllers to over some such mismatches. This text provides the reader with a grounding in sliding mode control and is appropriate for the graduate with a basic knowledge of classical control theory and some knowledge of state-space methods. From this basis, more advanced theoretical results are developed. Two industrial case studies, which present the results of sliding mode controller implementations, are used to illustrate the successful practical application theory.
Series Introduction xii
Preface xiv
An Introduction to Sliding Mode Control
1(18)
Introduction
1(5)
Properties of the Sliding Motion
6(5)
Different Controller Designs
11(4)
Pseudo-Sliding with a Smooth Control Action
15(2)
A State-Space Approach
17(1)
Notes and References
18(1)
Multivariable Systems Theory
19(12)
Introduction
19(1)
Stability of Dynamical Systems
19(6)
Linear Time Invariant Systems
20(1)
Quadratic Stability
21(4)
Linear Systems Theory
25(5)
Controllability and Observability
25(2)
Invariant Zeros
27(1)
State Feedback Control
28(1)
Static Output Feedback Control
28(1)
Observer-Based Control
29(1)
Notes and References
30(1)
Sliding Mode Control
31(34)
Introduction
31(1)
Problem Statement
32(1)
Existence of Solution and Equivalent Control
33(2)
Properties of the Sliding Motion
35(6)
The Reachability Problem
41(9)
The Single-Input Case
41(2)
Single-Input Control Structures
43(3)
An Example: The Normalised Pendulum Revisited
46(1)
The Multivariable Case
47(3)
The Unit Vector Approach
50(9)
Existence of an Ideal Sliding Mode
52(1)
Description of the Sliding Motion
53(1)
Practical Considerations
54(1)
Example: Control of a DC Motor
55(4)
Concluding Remarks
59(1)
Continuous Approximations
59(4)
Summary
63(1)
Notes and References
63(2)
Sliding Mode Design Approaches
65(28)
Introduction
65(1)
A Regular Form Based Approach
65(9)
Robust Eigenstructure Assignment
68(4)
Quadratic Minimisation
72(2)
A Direct Eigenstructure Assignment Approach
74(3)
Incorporation of a Tracking Requirement
77(8)
A Model-Reference Approach
78(4)
An Integral Action Approach
82(3)
Design Study: Pitch-Pointing Flight Controller
85(6)
Model-Reference Design
88(2)
Integral Action Based Design
90(1)
Summary
91(1)
Notes and References
92(1)
Sliding Mode Controllers Using Output Information
93(34)
Introduction
93(1)
Problem Formulation
93(1)
A Special Case: Square Plants
94(4)
A General Framework
98(10)
Hyperplane Design
99(6)
Control Law Synthesis
105(1)
Example 1
106(2)
Dynamic Compensation
108(3)
Dynamic Compensation (Observer Based)
111(10)
Control Law Construction
113(3)
Design Example 1
116(2)
Design Example 2: Inverted Pendulum
118(3)
A Model-Reference System Using Only Outputs
121(4)
Aircraft Example
122(3)
Summary
125(1)
Notes and References
125(2)
Sliding Mode Observers
127(28)
Introduction
127(1)
Sliding Mode Observers
127(6)
An Utkin Observer
127(2)
Example 1
129(2)
A Modification to Include a Linear Term
131(1)
A Walcott-Zak Observer
131(2)
Synthesis of a Discontinuous Observer
133(9)
A Canonical Form for Observer Design
134(2)
Existence Conditions
136(6)
The Walcott-Zak Observer Revisited
142(5)
Example 2: Pendulum
145(1)
Pendulum Simulation
146(1)
Sliding Mode Observers for Fault Detection
147(6)
Reconstruction of the Input Fault Signals
148(1)
Detection of Faults at the Output
149(1)
Example: Inverted Pendulum
150(1)
Simulations of Different Fault Conditions
151(2)
Summary
153(1)
Notes and References
154(1)
Observer-Based Output Tracking Controllers
155(28)
Introduction
155(1)
System Description and Observer Formulation
155(1)
An Integral Action Controller
156(14)
Nonlinear Observer Formulation (For Square Plants)
157(2)
State Feedback Integral Action Control Law (Reprise)
159(1)
Closed-Loop Analysis
160(6)
Design and Implementation Issues
166(4)
Example: A Temperature Control Scheme
170(5)
Observer Design
170(1)
Controller Design
171(1)
Design of the Nonlinear Gain Function
172(1)
Furnace Simulations
173(2)
A Model-Reference Approach
175(6)
Example: L-1011 Fixed-Wing Aircraft
179(2)
Summary
181(1)
Notes and References
181(2)
Automotive Case Studies
183(16)
Introduction
183(1)
Automotive Actuator with Stiction
183(5)
Robust Control of an Automotive Engine
188(9)
Controller Design Issues
190(1)
Engine Controller Design
191(1)
Implementation Results
192(5)
Summary
197(1)
Notes and References
197(2)
Furnace Control Case Study
199(26)
Introduction
199(3)
Observer Design
202(1)
Controller Design
203(1)
Implementation Results
204(2)
Summary
206(1)
Notes and References
206(1)
Appendices
A Mathematical Preliminaries
207(12)
Mathematical Notation
207(1)
Linear Algebra
208(1)
Vector Spaces and Linear Maps
208(2)
Properties of Linear Maps (Matrices)
210(1)
Rank and Determinant
211(2)
Eigenvalues, Eigenvectors and Singular Values
213(1)
QR Decomposition
214(1)
Norms, Inner Products and Projections
215(2)
Quadratic Forms
217(1)
Notes and References
218(1)
Assorted mfiles
219(6)
A Variation on the place Command
219(1)
Eigenstructure Assignment: The Complex Case
220(4)
World Wide Web Site
224(1)
References 225(8)
Index 233
Christopher Edwards, Sarah K. Spurgeon