Muutke küpsiste eelistusi

E-raamat: Small Unmanned Fixed-wing Aircraft Design: A Practical Approach

Series edited by (University of Liverpool, UK), (University of Southampton, UK), (University of Southampton, UK), (University of Southampton, UK), Series edited by (BAE Systems, UK), Series edited by (MIT)
  • Formaat: PDF+DRM
  • Sari: Aerospace Series
  • Ilmumisaeg: 29-Aug-2017
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119406327
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 107,38 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Sari: Aerospace Series
  • Ilmumisaeg: 29-Aug-2017
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119406327
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Small Unmanned Fixed-wing Aircraft Design is the essential guide to designing, building and testing fixed wing UAVs (or drones). It deals with aircraft from two to 150 kg in weight and is based on the first-hand experiences of the world renowned UAV team at the UK’s University of Southampton. 

The book covers both the practical aspects of designing, manufacturing and flight testing and outlines and the essential calculations needed to underpin successful designs. It describes the entire process of UAV design from requirements definition to configuration layout and sizing, through preliminary design and analysis using simple panel codes and spreadsheets to full CFD and FEA models and on to detailed design with parametric CAD tools. Its focus is on modest cost approaches that draw heavily on the latest digital design and manufacturing methods, including a strong emphasis on utilizing off-the-shelf components, low cost analysis, automated geometry modelling and 3D printing. 

It deliberately avoids a deep theoretical coverage of aerodynamics or structural mechanics; rather it provides a design team with sufficient insights and guidance to get the essentials undertaken more pragmatically. The book contains many all-colour illustrations of the dozens of aircraft built by the authors and their students over the last ten years giving much detailed information on what works best. It is predominantly aimed at under-graduate and MSc level student design and build projects, but will be of interest to anyone engaged in the practical problems of getting quite complex unmanned aircraft flying. It should also appeal to the more sophisticated aero-modeller and those engaged on research based around fixed wing UAVs. 

List of Figures xvii
List of Tables xxxiii
Foreword xxxv
Series Preface xxxvii
Preface xxxix
Acknowledgments xli
Part I Introducing Fixed-Wing UAVS
1 Preliminaries
3(12)
1.1 Externally Sourced Components
4(1)
1.2 Manufacturing Methods
5(1)
1.3 Project DECODE
6(1)
1.4 The Stages of Design
6(7)
1.4.1 Concept Design
8(2)
1.4.2 Preliminary Design
10(1)
1.4.3 Detail Design
11(1)
1.4.4 Manufacturing Design
12(1)
1.4.5 In-service Design and Decommissioning
13(1)
1.5 Summary
13(2)
2 Unmanned Air Vehicles
15(18)
2.1 A Brief Taxonomy of UAVs
15(4)
2.2 The Morphology of a UAV
19(10)
2.2.1 Lifting Surfaces
21(1)
2.2.2 Control Surfaces
22(1)
2.2.3 Fuselage and Internal Structure
23(1)
2.2.4 Propulsion Systems
24(1)
2.2.5 Fuel Tanks
24(1)
2.2.6 Control Systems
24(3)
2.2.7 Payloads
27(1)
2.2.8 Take-off and Landing Gear
27(2)
2.3 Main Design Drivers
29(4)
Part II The Aircraft In More Detail
3 Wings
33(12)
3.1 Simple Wing Theory and Aerodynamic Shape
33(4)
3.2 Spars
37(1)
3.3 Covers
37(1)
3.4 Ribs
38(1)
3.5 Fuselage Attachments
38(2)
3.6 Ailerons/Roll Control
40(1)
3.7 Flaps
41(1)
3.8 Wing Tips
42(1)
3.9 Wing-housed Retractable Undercarriage
42(2)
3.10 Integral Fuel Tanks
44(1)
4 Fuselages and Tails (Empennage)
45(14)
4.1 Main Fuselage/Nacelle Structure
45(2)
4.2 Wing Attachment
47(1)
4.3 Engine and Motor Mountings
48(2)
4.4 Avionics Trays
50(1)
4.5 Payloads - Camera Mountings
51(1)
4.6 Integral Fuel Tanks
52(2)
4.7 Assembly Mechanisms and Access Hatches
54(1)
4.8 Undercarriage Attachment
55(2)
4.9 Tails (Empennage)
57(2)
5 Propulsion
59(14)
5.1 Liquid-Fueled IC Engines
59(7)
5.1.1 Glow-plug IC Engines
62(1)
5.1.2 Spark Ignition Gasoline IC Engines
62(3)
5.1.3 IC Engine Testing
65(1)
5.2 Rare-earth Brushless Electric Motors
66(2)
5.3 Propellers
68(2)
5.4 Engine/Motor Control
70(1)
5.5 Fuel Systems
70(1)
5.6 Batteries and Generators
71(2)
6 Airframe Avionics and Systems
73(20)
6.1 Primary Control Transmitter and Receivers
73(3)
6.2 Avionics Power Supplies
76(2)
6.3 Servos
78(4)
6.4 Wiring, Buses, and Boards
82(4)
6.5 Autopilots
86(1)
6.6 Payload Communications Systems
87(1)
6.7 Ancillaries
88(2)
6.8 Resilience and Redundancy
90(3)
7 Undercarriages
93(8)
7.1 Wheels
93(2)
7.2 Suspension
95(1)
7.3 Steering
95(2)
7.4 Retractable Systems
97(4)
Part III Designing UAVS
8 The Process of Design
101(18)
8.1 Goals and Constraints
101(2)
8.2 Airworthiness
103(1)
8.3 Likely Failure Modes
104(6)
8.3.1 Aerodynamic and Stability Failure
105(1)
8.3.2 Structural Failure
106(1)
8.3.3 Engine/Motor Failure
107(1)
8.3.4 Control System Failure
107(3)
8.4 Systems Engineering
110(9)
8.4.1 Work-breakdown Structure
110(2)
8.4.2 Interface Definitions
112(1)
8.4.3 Allocation of Responsibility
112(1)
8.4.4 Requirements Flowdown
112(1)
8.4.5 Compliance Testing
113(1)
8.4.6 Cost and Weight Management
114(3)
8.4.7 Design "Checklist"
117(2)
9 Tool Selection
119(8)
9.1 Geometry/CAD Codes
120(3)
9.2 Concept Design
123(2)
9.3 Operational Simulation and Mission Planning
125(1)
9.4 Aerodynamic and Structural Analysis Codes
125(1)
9.5 Design and Decision Viewing
125(1)
9.6 Supporting Databases
126(1)
10 Concept Design: Initial Constraint Analysis
127(38)
10.1 The Design Brief
127(3)
10.1.1 Drawing up a Good Design Brief
127(1)
10.1.2 Environment and Mission
128(1)
10.1.3 Constraints
129(1)
10.2 Airframe Topology
130(14)
10.2.1 Unmanned versus Manned - Rethinking Topology
130(3)
10.2.2 Searching the Space of Topologies
133(3)
10.2.3 Systematic "invention" of UAV Concepts
136(8)
10.2.4 Managing the Concept Design Process
144(1)
10.3 Airframe and Powerplant Scaling via Constraint Analysis
144(2)
10.3.1 The Role of Constraint Analysis
144(1)
10.3.2 The Impact of Customer Requirements
145(1)
10.3.3 Concept Constraint Analysis - A Proposed Computational Implementation
145(1)
10.3.4 The Constraint Space
146(1)
10.4 A Parametric Constraint Analysis Report
146(16)
10.4.1 About This Document
146(1)
10.4.2 Design Brief
147(2)
10.4.3 Unit Conversions
149(2)
10.4.4 Basic Geometry and Initial Guesses
151(1)
10.4.5 Preamble
151(1)
10.4.6 Preliminary Calculations
152(2)
10.4.7 Constraints
154(8)
10.5 The Combined Constraint Diagram and Its Place in the Design Process
162(3)
11 Spreadsheet-Based Concept Design and Examples
165(24)
11.1 Concept Design Algorithm
166(3)
11.2 Range
169(1)
11.3 Structural Loading Calculations
169(1)
11.4 Weight and CoG Estimation
170(1)
11.5 Longitudinal Stability
170(1)
11.6 Powering and Propeller Sizing
171(3)
11.7 Resulting Design: Decode-1
174(3)
11.8 A Bigger Single Engine Design: Decode-2
177(5)
11.9 A Twin Tractor Design: SPOTTER
182(7)
12 Preliminary Geometry Design
189(6)
12.1 Preliminary Airframe Geometry and CAD
190(2)
12.2 Designing Decode-1 with AirCONICS
192(3)
13 Preliminary Aerodynamic and Stability Analysis
195(42)
13.1 Panel Method Solvers - XFoil and XFLR5
196(4)
13.2 RANS Solvers - Fluent
200(8)
13.2.1 Meshing, Turbulence Model Choice, and y+
204(4)
13.3 Example Two-dimensional Airfoil Analysis
208(2)
13.4 Example Three-dimensional Airfoil Analysis
210(2)
13.5 3D Models of Simple Wings
212(2)
13.6 Example Airframe Aerodynamics
214(23)
13.6.1 Analyzing Decode-1 with XFLR5: Aerodynamics
215(6)
13.6.2 Analyzing Decode-1 with XFLR5: Control Surfaces
221(2)
13.6.3 Analyzing Decode-1 with XFLR5: Stability
223(4)
13.6.4 Flight Simulators
227(1)
13.6.5 Analyzing Decode-1 with Fluent
228(9)
14 Preliminary Structural Analysis
237(36)
14.1 Structural Modeling Using AirCONICS
240(3)
14.2 Structural Analysis Using Simple Beam Theory
243(2)
14.3 Finite Element Analysis (FEA)
245(20)
14.3.1 FEA Model Preparation
246(4)
14.3.2 FEA Complete Spar and Boom Model
250(5)
14.3.3 FEA Analysis of 3D Printed and Fiber- or Mylar-clad Foam Parts
255(10)
14.4 Structural Dynamics and Aeroelasticity
265(7)
14.4.1 Estimating Wing Divergence, Control Reversal, and Flutter Onset Speeds
266(6)
14.5 Summary of Preliminary Structural Analysis
272(1)
15 Weight and Center of Gravity Control
273(8)
15.1 Weight Control
273(6)
15.2 Longitudinal Center of Gravity Control
279(2)
16 Experimental Testing and Validation
281(22)
16.1 Wind Tunnels Tests
282(8)
16.1.1 Mounting the Model
282(2)
16.1.2 Calibrating the Test
284(1)
16.1.3 Blockage Effects
284(3)
16.1.4 Typical Results
287(3)
16.2 Airframe Load Tests
290(10)
16.2.1 Structural Test Instruments
290(3)
16.2.2 Structural Mounting and Loading
293(1)
16.2.3 Static Structural Testing
294(2)
16.2.4 Dynamic Structural Testing
296(4)
16.3 Avionics Testing
300(3)
17 Detail Design: Constructing Explicit Design Geometry
303(28)
17.1 The Generation of Geometry
303(3)
17.2 Fuselage
306(3)
17.3 An Example UAV Assembly
309(4)
17.3.1 Hand Sketches
311(1)
17.3.2 Master Sketches
311(2)
17.4 3D Printed Parts
313(5)
17.4.1 Decode-1: The Development of a Parametric Geometry for the SLS Nylon Wing Spar/Boom "Scaffold Clamp"
313(1)
17.4.2 Approach
314(1)
17.4.3 Inputs
314(1)
17.4.4 Breakdown of Part
315(1)
17.4.5 Parametric Capability
316(1)
17.4.6 More Detailed Model
317(1)
17.4.7 Manufacture
318(1)
17.5 Wings
318(13)
17.5.1 Wing Section Profile
320(3)
17.5.2 Three-dimensional Wing
323(8)
Part IV Manufacture And Flight
18 Manufacture
331(18)
18.1 Externally Sourced Components
331(1)
18.2 Three-Dimensional Printing
332(5)
18.2.1 Selective Laser Sintering (SLS)
332(3)
18.2.2 Fused Deposition Modeling (FDM)
335(1)
18.2.3 Sealing Components
335(2)
18.3 Hot-wire Foam Cutting
337(2)
18.3.1 Fiber and Mylar Foam Cladding
339(1)
18.4 Laser Cutting
339(3)
18.5 Wiring Looms
342(1)
18.6 Assembly Mechanisms
342(5)
18.6.1 Bayonets and Locking Pins
345(1)
18.6.2 Clamps
346(1)
18.6.3 Conventional Bolts and Screws
346(1)
18.7 Storage and Transport Cases
347(2)
19 Regulatory Approval and Documentation
349(20)
19.1 Aviation Authority Requirements
349(2)
19.2 System Description
351(7)
19.2.1 Airframe
352(3)
19.2.2 Performance
355(1)
19.2.3 Avionics and Ground Control System
356(2)
19.2.4 Acceptance Flight Data
358(1)
19.3 Operations Manual
358(3)
19.3.1 Organization, Team Roles, and Communications
359(1)
19.3.2 Brief Technical Description
359(1)
19.3.3 Operating Limits, Conditions, and Control
359(1)
19.3.4 Operational Area and Flight Plans
360(1)
19.3.5 Operational and Emergency Procedures
360(1)
19.3.6 Maintenance Schedule
360(1)
19.4 Safety Case
361(7)
19.4.1 Risk Assessment Process
362(1)
19.4.2 Failure Modes and Effects
362(1)
19.4.3 Operational Hazards
363(1)
19.4.4 Accident List
364(1)
19.4.5 Mitigation List
364(2)
19.4.6 Accident Sequences and Mitigation
366(2)
19.5 Flight Planning Manual
368(1)
20 Test Flights and Maintenance
369(16)
20.1 Test Flight Planning
369(6)
20.1.1 Exploration of Flight Envelope
369(1)
20.1.2 Ranking of Flight Tests by Risk
370(1)
20.1.3 Instrumentation and Recording of Flight Test Data
370(1)
20.1.4 Pre-flight Inspection and Checklists
371(1)
20.1.5 Atmospheric Conditions
371(1)
20.1.6 Incident and Crash Contingency Planning, Post Crash Safety, Recording, and Management of Crash Site
371(4)
20.2 Test Flight Examples
375(6)
20.2.1 UAS Performance Flight Test (MANUAL Mode)
375(2)
20.2.2 UAS CoG Flight Test (MANUAL Mode)
377(1)
20.2.3 Fuel Consumption Tests
377(1)
20.2.4 Engine Failure, Idle, and Throttle Change Tests
377(1)
20.2.5 Autonomous Flight Control
378(2)
20.2.6 Auto-Takeoff Test
380(1)
20.2.7 Auto-Landing Test
380(1)
20.2.8 Operational and Safety Flight Scenarios
381(1)
20.3 Maintenance
381(4)
20.3.1 Overall Airframe Maintenance
382(1)
20.3.2 Time and Flight Expired Items
382(1)
20.3.3 Batteries
383(1)
20.3.4 Flight Control Software
383(1)
20.3.5 Maintenance Record Keeping
384(1)
21 Lessons Learned
385(10)
21.1 Things that Have Gone Wrong and Why
388(7)
Part V Appendices, Bibliography, And Index
A Generic Aircraft Design Flowchart
395(4)
B Example AirCONICS Code for Decode-1
399(26)
C Worked (Manned Aircraft) Detail Design Example
425(14)
C.1 Stage 1: Concept Sketches
425(4)
C.2 Stage 2: Part Definition
429(5)
C.3 Stage 3: "Flying Surfaces"
434(1)
C.4 Stage 4: Other Items
435(1)
C.5 Stage 5: Detail Definition
435(4)
Bibliography 439(2)
Index 441
Andrew J. Keane is a Professor of Computational Engineering in the Faculty of Engineering and the Environment at the University of Southampton. He is the Director of the Rolls-Royce University Technology Center for Computational Engineering at the University and is a fellow of the RINA, IMechE and the Royal Academy of Engineering.

András Sóbester is a Senior Lecturer of Aeronautical Engineering in the Faculty of Engineering and the Environment at the University of Southampton. His main research focus is on developing techniques for the aerodynamic optimization of aircraft.

James P. Scanlan is a Professor of Design in the Faculty of Engineering and the Environment at the University of Southampton. He spent more than 10 years working in the aerospace industry and now manages a number of research programmes sponsored by BAE systems, Airbus, Rolls-Royce and the EPSRC. He is a Fellow of the Royal Aeronautical Society.