Muutke küpsiste eelistusi

E-raamat: Smart Connection Systems: Design and Seismic Analysis

  • Formaat: 432 pages
  • Ilmumisaeg: 05-Oct-2015
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781317416982
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 59,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 432 pages
  • Ilmumisaeg: 05-Oct-2015
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781317416982
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book introduces new smart connection systems which can be used in aseismic building design in order to control inter-story drifts and to reduce residual displacements. They are also utilized as damper devices and base isolators. The application of these systems to composite moment frame buildings will also be treated in the book. In addition, the book will discuss how to make nonlinear frame models used for simulating entire behavior in the building as well as advance finite element (FE) models used for accurately reproducing mechanical behavior in the local system. Will be of interest to researchers, engineers, and students in the field of civil and structural engineering.
List of Figures xv
List of Tables xxiii
Preface xxv
About the Author xxvii
Part 1 Design and analyses for smart PR-CFT connections
1 Preliminary study
3(6)
1.1 Introduction
3(6)
2 Design and modeling for smart PR-CFT connection systems
9(102)
2.1 History of related systems
9(6)
2.1.1 Related systems
9(1)
2.1.2 PR connection systems
9(2)
2.1.3 Steel beam to CFT column connection
11(2)
2.1.4 Application of SMA in structures
13(2)
2.2 Unique characteristics for PR-CFT connection study
15(2)
2.3 Design procedure for prototype structures
17(24)
2.3.1 Design requirement strength
18(1)
2.3.2 Composite column strength
18(3)
2.3.3 Component member strength
21(16)
2.3.3.1 Components with slip
22(10)
2.3.3.2 Components without slip
32(5)
2.3.4 Composite panel zone strength
37(4)
2.4 Preliminary design procedure for connection components
41(9)
2.4.1 Composite column design
41(2)
2.4.2 End plate connection
43(4)
2.4.3 T-stub connections
47(2)
2.4.4 Clip angle connection
49(1)
2.5 Connection design and examples
50(12)
2.5.1 Design principles
53(1)
2.5.2 Specimen details
53(1)
2.5.3 Typical configurations
54(1)
2.5.4 Connection details
55(7)
2.6 Failure modes
62(2)
2.7 Composite frame design
64(16)
2.7.1 Characteristics of composite moment frames
64(3)
2.7.2 Building configurations
67(5)
2.7.2.1 Building description for 4 story building
69(2)
2.7.2.2 Building description for 6 story building
71(1)
2.7.3 Seismic design method
72(4)
2.7.3.1 Load combinations
73(1)
2.7.3.2 Equivalent lateral loads
73(1)
2.7.3.3 Regulations and limits
74(2)
2.7.4 Design of composite moment frame specimens
76(4)
2.8 FE modeling for connection systems
80(16)
2.8.1 3D solid modeling method
82(1)
2.8.2 Modeling parts and elements adopted
82(3)
2.8.3 Material properties
85(3)
2.8.4 Interface conditions
88(4)
2.8.5 Initial conditions
92(1)
2.8.6 Loading
93(1)
2.8.7 Steps and solution
93(3)
2.9 2D frame models and analyses
96(8)
2.9.1 Joint model
96(1)
2.9.2 Joint model of the end-plate connection
97(3)
2.9.3 Joint model of the T-stub connection
100(4)
2.10 Nonlinear analyses of composite moment frames
104(7)
2.10.1 Introduction to nonlinear analyses
104(1)
2.10.2 Failure mechanism for composite frame models
105(2)
2.10.3 Performance evaluation (ESR)
107(4)
3 Analyses for smart PR-CFT connections (end plate connection type)
111(40)
3.1 General overview
111(3)
3.2 Design for new connections
114(1)
3.2.1 Design philosophy
114(1)
3.2.2 Connection details
115(1)
3.3 Three-dimensional finite element analyses
115(6)
3.3.1 Modeling procedures
115(3)
3.3.2 FE analysis results
118(1)
3.3.3 Observations
119(2)
3.4 Connection models under cyclic loads
121(8)
3.4.1 Simplified 2D joint models
121(4)
3.4.2 Model validation
125(2)
3.4.3 Cyclic test results and observations
127(2)
3.5 Composite moment frames
129(2)
3.6 Design methodology for composite moment frames
131(7)
3.6.1 Frame design
131(1)
3.6.2 Building configuration
131(1)
3.6.3 Seismic design loads
132(3)
3.6.4 Numerical modeling attributes
135(3)
3.7 Nonlinear analyses
138(5)
3.7.1 Introduction
138(1)
3.7.2 Nonlinear pushover analysis
139(3)
3.7.3 Nonlinear dynamic analysis
142(1)
3.8 Damage evaluations
143(5)
3.8.1 Performance-based evaluation
143(3)
3.8.2 Damage estimations
146(2)
3.9 Summary and conclusion
148(3)
4 Analyses for smart PR-CFT connections (T-stub connection type)
151(24)
4.1 General overview
151(4)
4.2 New connection designs
155(1)
4.3 Joint models and cyclic tests
155(8)
4.3.1 Joint models
156(1)
4.3.2 Component springs
156(2)
4.3.3 Joint elements
158(4)
4.3.4 Model verification and validation
162(1)
4.4 Frame models
163(1)
4.5 Nonlinear analyses
164(6)
4.5.1 Nonlinear pushover analysis results
166(1)
4.5.2 Nonlinear dynamic analysis results
167(1)
4.5.3 Performance evaluations
168(2)
4.6 Summary and conclusions
170(5)
Part 2 Design and analyses for bolted connections
5 Bolted connections (FE models)
175(20)
5.1 General overview
175(1)
5.2 Experimental program
176(1)
5.3 Theoretical background
177(8)
5.3.1 Full connection behavior
177(3)
5.3.2 Component strength models
180(4)
5.3.3 Failure modes
184(1)
5.4 3D FE T-stub connection models
185(1)
5.5 FE analysis results
186(3)
5.6 Investigations of FE analysis results
189(5)
5.7 Concluding remarks
194(1)
6 Bolted connections (component models)
195(30)
6.1 General overview
195(1)
6.2 Experimental study
196(4)
6.3 Stiffness modeling
200(15)
6.3.1 Mechanical joint model
200(1)
6.3.2 Component stiffness
201(13)
6.3.2.1 T-stub flange and tension bolts
203(5)
6.3.2.2 T-stem member
208(2)
6.3.2.3 Slip and bearing model
210(4)
6.3.3 Panel zone model
214(1)
6.4 Numerical modeling attributes
215(2)
6.4.1 T-stub components
215(2)
6.4.2 Full-scale T-stub connections
217(1)
6.5 Model validation
217(6)
6.5.1 Component tests
219(3)
6.5.2 Full-scale connection tests
222(1)
6.6 Concluding remarks
223(2)
7 Recentering bolted connections (component models)
225(18)
7.1 General overview
225(1)
7.2 Experimental program
226(2)
7.3 Mechanical modeling
228(4)
7.4 Behavior of both types of connection models
232(8)
7.4.1 Behavior of traditional steel bolted clip-angle connections
232(3)
7.4.2 Behavior of SMA bolted clip-angle connections
235(4)
7.4.3 Numerical analysis results and observations
239(1)
7.5 Conclusions
240(3)
Part 3 Design and analyses for other smart connections
8 Gusset plate connections
243(22)
8.1 General overview
243(2)
8.2 Selection of representative example
245(1)
8.3 Design resistance strength
246(6)
8.4 3D FE gusset plate connection models
252(3)
8.5 Strength evaluation
255(3)
8.6 Analysis results
258(2)
8.7 Investigations of FE analysis results
260(3)
8.8 Conclusions
263(2)
9 Recentering slit damper connection
265(18)
9.1 General overview
265(1)
9.2 Sample slit damper specimens
266(3)
9.3 Finite element models
269(1)
9.4 UMAT equations and simulation
270(3)
9.5 Analysis result and verification
273(5)
9.6 Comparison and observation
278(4)
9.7 Conclusions
282(1)
10 Smart damping connectors
283(30)
10.1 General overview
283(1)
10.2 Shape memory alloys
284(2)
10.3 Frame design and description
286(4)
10.4 Analytical frame models
290(4)
10.5 Ground motions
294(2)
10.6 Nonlinear pushover analyses
296(5)
10.6.1 Analysis procedure and seismic design checks
296(1)
10.6.2 Nonlinear pushover analysis results
297(2)
10.6.3 Performance-based observation
299(2)
10.7 Nonlinear dynamic analysis results
301(2)
10.8 Maximum inter-story drifts and residual inter-story drifts
303(3)
10.9 Seismic evaluations
306(4)
10.10 Summary and conclusions
310(3)
Appendix A: A detailed design example for CFT columns 313(16)
A.1 Introduction
313(1)
A.2 Calculation examples
313(16)
A.2.1 RCFT 16 x 16 x 500 column
313(5)
A.2.1.1 Point A (MA = 0)
315(1)
A.2.1.2 Point B (PB = 0)
316(1)
A.2.1.3 Point C (Mc = MB; Pc = 0.85fc'Ac)
317(1)
A.2.1.4 Point D
317(1)
A.2.1.5 Point E
317(1)
A.2.2 CCFT 18 x 500 column
318(3)
A.2.2.1 Point A (MA = 0)
319(1)
A.2.2.2 Point B (PB = 0)
320(1)
A.2.2.3 Point C
320(1)
A.2.2.4 Point D
321(1)
A.2.2.5 Point E
321(1)
A.2.3 RCFT 12 x 13 x 500 column
321(3)
A.2.3.1 Point A (MA = 0)
322(1)
A.2.3.2 Point B (PB = 0)
323(1)
A.2.3.3 Point C (Mc = MB; Pc = 0.85fc'Ac)
323(1)
A.2.3.4 Point D
324(1)
A.2.3.5 Point E
324(1)
A.2.4 CCFT 14 x 500 column
324(5)
A.2.4.1 Point A (MA = 0)
325(1)
A.2.4.2 Point B (PB = 0)
326(1)
A.2.4.3 Point C
327(1)
A.2.4.4 Point D
327(1)
A.2.4.5 Point E
327(2)
Appendix B: Design examples and failure modes 329(30)
B.1 General introduction
329(1)
B.2 Design examples
329(10)
B.2.1 End-plate connection
329(6)
B.2.1.1 Check the basic information
329(2)
B.2.1.2 Calculate the design strength
331(1)
B.2.1.3 Determine the required bar diameter
331(1)
B.2.1.4 Determine the thickness of the end-plate
332(1)
B.2.1.5 Check the shear resistance
332(2)
B.2.1.6 Determine the size of the end-plate stiffener
334(1)
B.2.1.7 Check the rupture and bearing failure at the bars
335(1)
B.2.1.8 Check the steel column strength
335(1)
B.2.2 T-stub connection
335(4)
B.2.2.1 Determine the required design strength
335(1)
B.2.2.2 Select the diameter of tension bars
336(1)
B.2.2.3 Layout the shear bolts and tension bars
336(1)
B.2.2.4 Determine the thickness of the T-stem
337(1)
B.2.2.5 Determine the bf and tf for the T-stub flange
338(1)
B.2.2.6 Check the T-stub section and failure modes
339(1)
B.2.2.7 Determine the shear connection
339(1)
B.3 Failure mode checks
339(20)
B.3.1 End-plate connection with RCFT columns
340(5)
B.3.1.1 Given values
341(1)
B.3.1.2 Determine the design strength
341(1)
B.3.1.3 Ductile failure modes
342(1)
B.3.1.4 Mixed failure modes
342(1)
B.3.1.5 Brittle (fracture) failure modes
343(2)
B.3.2 End-plate connection with CCFT columns
345(5)
B.3.2.1 Given values
345(1)
B.3.2.2 Determine the design strength
346(1)
B.3.2.3 Ductile failure modes
346(1)
B.3.2.4 Mixed failure modes
347(1)
B.3.2.5 Brittle (fracture) failure modes
348(2)
B.3.3 T-stub connection with RCFT columns
350(6)
B.3.3.1 Given values
350(1)
B.3.3.2 Determine the design strength
351(1)
B.3.3.3 Ductile failure modes
351(1)
B.3.3.4 Mixed failure modes
352(2)
B.3.3.5 Brittle (fracture) failure modes
354(2)
B.3.4 T-stub connection with CCFT columns
356(4)
B.3.4.1 Mixed failure modes
356(3)
Appendix C: Detail design examples for panel zones 359(16)
C.1 Introduction
359(1)
C.2 Calculation examples
360(15)
C.2.1 End plate connection with RCFT
360(4)
C.2.1.1 Check the basic information
361(1)
C.2.1.2 Calculation procedures
361(2)
C.2.1.3 Panel zone strength
363(1)
C.2.2 End plate connection with CCFT
364(3)
C.2.2.1 Check the basic information
364(1)
C.2.2.2 Calculation procedures
364(3)
C.2.2.3 Panel zone strength
367(1)
C.2.3 T-stub connection with RCFT
367(3)
C.2.3.1 Check the basic information
367(1)
C.2.3.2 Calculation procedures
368(2)
C.2.3.3 Panel zone strength
370(1)
C.2.4 T-stub connection with CCFT
370(5)
C.2.4.1 Check the basic information
370(1)
C.2.4.2 Calculation procedures
371(2)
C.2.4.3 Panel zone strength
373(2)
Appendix D: Earthquake ground motions 375(12)
References 387(12)
Index 399
Dr. Jong Wan Hu received his Ph.D. degree from the School of Civil and Environmental Engineering, Georgia Institute of Technology, USA. Dr. Hu was a Post-Doctorate Research Fellow at the Structural, Mechanics, and Material Research Group of the Georgia Institute of Technology. Dr. Hu also worked as an Associate Research Fellow at the Korea Institute of S&T Evaluation and Planning (KISTEP) and as an Assistant Administrator at the National S&T Council (NSTC) for two years. He is currently Assistant Professor at Incheon National University. He is an active member of ASME and ASCE and his research interests are in the area of smart structures, seismic design, composite structures, and finite element modeling.